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This paper characterizes interindustry heterogeneity in rates of learning-by-doing, and examines
how industry learning rates are connected with firm performance. Using plant-level data from
the U.S. manufacturing sector, we measure the industry learning rate as the coefficient on
cumulative output in a production function. We find that learning rates vary considerably among
industries and are higher in industries with greater R&D, advertising, and capital intensity. More
importantly, we find that higher rates of learning are associated with wider dispersion of Tobin’s
q and profitability among firms in the industry. These findings suggest that learning intensity
represents an important characteristic of the industry environment that affects the range of firm
performance. Copyright © 2009 John Wiley & Sons, Ltd.

INTRODUCTION

Industries vary considerably in the degree to which
firm performance is determined by learning from
direct operating experience or learning-by-doing.
In some industries, products and processes may
be relatively simple, or entrepreneurs and man-
agers may be able to leverage external sources
(e.g., specialized technology suppliers, consultants,
or competitors’ employees) to acquire knowledge
about their business operations. Other industry
environments may not support such acquisition of
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knowledge or may involve complex, knowledge-
intensive processes and products, thereby con-
straining firms to improve performance largely
through direct experience. In such environments,
learning-by-doing may significantly affect firm
performance.

In this study, we focus on the importance of
accumulated experience in the production process
as a measure of the importance of learning-by-
doing in an industry (‘industry learning intensity’).
Further, we examine how differences in industry
learning intensity are associated with business per-
formance. Using plant-level data from the U.S.
Census Bureau (USCB) on over 55,000 manu-
facturing plants during the time period 1973 to
2000, we estimate the industry learning rate as the
coefficient on prior cumulative output in a pro-
duction function. Applying these industry learn-
ing rates to firm data from Compustat, we find
that the cross-sectional variation in business per-
formance within an industry, as measured by the
interpercentile range (10th to 90th) of firm ¢ and
firm profitability, is much greater in industries
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with higher learning intensity. These findings sug-
gest that learning intensity is an important char-
acteristic of the industry environment that should
be considered in studies of firm and industry
performance.

This study draws from literature on organi-
zational learning and ‘learning curves,” which
have been studied since the 1930s. The ‘learning
curve’ —the empirical relationship between unit
cost of production and operating experience—has
been estimated for numerous industries such as
ships (Rapping, 1965; Thornton and Thompson,
2001), chemicals (Lieberman, 1984), and semi-
conductors (Gruber, 1994; Gruber, 2000). Cost
reductions generally appear to follow a ‘power-
law,” that is, the unit cost of production declines
at a decreasing rate with increasing experience,
typically measured as prior cumulative output.
While most studies have found that performance
improves as organizations accumulate operating
experience, the rate of learning has been shown
to vary greatly across industries. In a review of
22 field studies on learning-by-doing, Dutton and
Thomas (1984) noted that unit costs fell at rates
ranging up to 45 percent for each doubling of
cumulative experience. Moreover, learning rates
have been found to vary within an industry—even
within subunits of the same firm. In their exam-
ination of productivity, Hayes and Clark (1986)
found that learning rates differed significantly even
across factories within the same company. In an
analysis of cardiac surgery departments imple-
menting a new technology for minimally invasive
cardiac surgery, Pisano, Bohmer, and Edmondson
(2001) found that the learning curve slope var-
ied significantly across organizations. While such
studies have demonstrated that learning rates vary
among organizations and industries, prior investi-
gations have drawn from limited datasets and have
not attempted to characterize differences in learn-
ing rates across a broad range of industries.

This study also links to another line of papers,
mostly in the structure-conduct-performance liter-
ature, that examines how industry factors affect
firm performance. Many empirical studies have
examined how variables such as industry structure,
research and development (R&D) intensity, and
advertising intensity affect firm performance (see
Schmalensee [1989] for a review.). However, nei-
ther the industry learning intensity nor the role of
direct experience has been studied (empirically) as
a variable that could affect firm performance. This
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is a bit surprising given that a number of studies
have argued that the learning curve has implica-
tions for competitive strategy and may be used
to generate ‘first mover advantages’ (e.g. Spence,
1981; Lieberman, 1987).

This study makes two contributions to the exist-
ing literature on learning. First, it provides a broad-
brush characterization of plant-level learning-by-
doing in over 100 three-digit standard industrial
classification (SIC) code industries in the U.S.
manufacturing sector. This characterization rein-
forces findings in prior studies that industries vary
considerably in their learning rates. In addition, we
provide a set of reasonably comparable industry-
level estimates of the importance of learning from
direct experience. Most prior studies have focused
on a single product or service, largely due to
nonavailability of longitudinal data across indus-
tries. In this study, we use a large sample drawn
from USCB data that spans the entire U.S. man-
ufacturing sector. We adopt a production function
approach and measure the industry learning inten-
sity as the coefficient on prior cumulative out-
put in a production function. This approach is
approximately equivalent to the traditional unit-
cost learning curve and provides a reasonably uni-
form measure of learning rates across industries,
albeit subject to some limitations. We find that the
industry learning rate displays considerable hetero-
geneity across industries and that it is positively
correlated with industry capital-labor ratio, R&D
intensity, and advertising intensity, even after con-
trolling for joint industry-year fixed effects or
plant fixed effects. These correlations are consis-
tent with the intuitive notion that learning-by-doing
may be more important in industries with greater
complexity.

Second, our study demonstrates that industry
learning intensity has robust relationships with firm
performance. In particular, we find that the cross-
sectional heterogeneity of firm performance within
an industry, as measured by the interpercentile
range of firm profits or firm ¢, is higher in indus-
tries with higher rates of learning. In other words,
in such industries, the difference between the ‘best’
and the ‘worst’ (conditional on survival) firms is
considerably higher. Taken together, our findings
add to the existing literature by introducing indus-
try learning intensity as an important component of
the industry environment that may explain compet-
itive heterogeneity.
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LEARNING-BY-DOING

Learning-by-doing is generally considered to be
the result of organizational search for better rou-
tines combined with trial and error experimenta-
tion, though it has been modeled in a number
of different ways (Levitt and March, 1988; Muth,
1986; Jovanovic and Nyarko, 1995). In this paper,
we use the information-theoretic model devel-
oped by Jovanovic and Nyarko (1995) to develop
hypotheses that characterize interindustry varia-
tions in the rate of learning and relate the rate of
learning-by-doing to heterogeneity of firm perfor-
mance.! This model not only relates characteristics
of the underlying learning processes to the learning
rate, but also allows us to examine the impact of
changes in the learning rate on the heterogeneity
of firm performance.

Here, we summarize the model briefly. (Tech-
nical details can be found in the Jovanovic and
Nyarko [1995] paper.) Decision makers (e.g., man-
agers, engineers, workers) make decisions that
affect the efficiency of a production activity. The
efficiency is determined by how far the produc-
tion decisions are from their ‘ideal’ values. More
specifically, the efficiency 7 is defined as:

n=0 I - (yj - Zj)z]j:l to N (1)

where N is the number of tasks that activity
requires, z; is the decision for the j" task, and
y; is the ‘ideal’ for the j® task.”> Note that effi-
ciency is maximized at z=y, and the maximal level
of efficiency is ®. The ideal level ‘y’ is a ran-
dom variable that the decision makers do not have
complete information about, prior to production.
Specifically, it is assumed that

y=6-+w 2)

where 0 represents the optimal way (on average)
to perform the activity, and w represents transi-
tory disturbances that have zero mean and variance
o2, Decision makers know the variance of 6, 0%,
but do not know its mean. Based on information
available before a production run, decision makers

'We thank an anonymous referee for pointing us in this
direction.

2 The implications do not depend on the choice of this particular
functional form. Jovanovic and Nyarko (1995) show that the
findings from their model are robust to different functional
forms.
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choose z for that run. Upon completing the pro-
duction run, decision makers observe the resulting
efficiency 7, and use that ‘signal’ to revise their
estimates of the mean of 6. As the number of
production runs increases, decision makers have
increasingly precise estimates of the mean of 6, but
they never know it exactly because of the presence
of disturbances.

This formulation, though simple, incorporates
three distinct dimensions of complexity. The first,
N, is the most intuitive. The greater the num-
ber of tasks that any production activity requires,
the greater the number of decisions involved, and
hence, the higher the complexity of the activity.
However, activities that entail a large number of
tasks need not be highly complex. It is possible
that even though the number of tasks involved
is large, the decision makers have a lot of infor-
mation about how the tasks should be performed,
and hence the uncertainty surrounding the optimal
decision is small. The variance of 6, o2, is the
second dimension of complexity, which captures
the uncertainty about the optimal way to perform
a specific task. Interpreted this way, tasks that are
relatively new to industry participants are likely to
have a greater variance. The third distinct dimen-
sion is the importance of transitory disturbances w
(as measured by the variance, ¢2,). In situations
with low levels of such disturbances or ‘noise,’
decision makers can glean more useful informa-
tion from each production run than they can in
contexts where these disturbances are high.

A fourth dimension of complexity, ignored by
the model, is the degree of interaction among
the tasks. Interactions can greatly increase sys-
tem complexity (Simon, 1962), and in extreme
cases, learning can become so difficult that little
or no progress takes place (Levinthal, 1997). In
the Jovanovic and Nyarko (1995) model, tasks are
performed sequentially and there are no interac-
tions. Most industrial manufacturing processes are
made up of sequential tasks that broadly fit the
model assumptions. It is possible, however, that
some industries are characterized by a degree of
interactive complexity sufficient to negate the pre-
dictions drawn below.

We argue that the three dimensions of complex-
ity in the Jovanovic and Nyarko (1995) model
capture important elements of the learning envi-
ronment in manufacturing plants, and moreover,
that these elements are likely to vary greatly across

Strat. Mgmt. J., 31: 390-412 (2010)
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industries. For example, one would expect com-
plexity along all three dimensions to be low in
mature industries where technology is well under-
stood, and where the production process consists
of a small number of stages that can be readily
observed. Representative examples in our sam-
ple include leather goods and yarn production. At
the other extreme, complexity is likely to be high
in industries such as computer manufacturing and
petroleum refining, which incorporate uncertainty
at a large number of process steps. Given the rapid
pace of change in computer technology, knowl-
edge of optimal methods from previous product
generations provides only limited guidance for cur-
rent practice, so uncertainty is high in a new plant.
In the case of petroleum refining, work-in-process
can be monitored only indirectly, and variations
in the quality of crude oil can make it hard to
identify the optimal process parameters. As these
examples suggest, at a broad level one can con-
ceive of the complexity of manufacturing plants
as an increasing function of the number of process
stages (N), and the degree of uncertainty (6%;) and
‘noise’ (0%, arising at each stage.

393

Based on this formulation, Jovanovic and
Nyarko (1995) derive a formula for the expected
efficiency on production run t,

E.(n:) =0 (I -x, — )", 3)
where x, = o02,0%/(0%, +10%). Noting that
X, = 0 as the number of production runs tends to
infinity, we can define the eventual expected effi-
ciency as

E(") =06 (1-0a’)". “4)

Dividing Equation 3 by Equation 4, we obtain
a learning curve that is a function of the three
dimensions of complexity.

p==0=x -0’ )N/ -0’ &)

Equation 5 allows us to analyze the relationship
between the dimensions of complexity and the
slope of the learning curve. We do this in Figure 1

where we plot the logarithm of this learning curve
for different values of the parameters. It is evident
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The horizontal axis in these graphs is the logarithm of the cumulative number of
production runs. The vertical axis is the logarithm of the ratio of expected efficiency
at any point in time to the eventual expected efficiency.

Figure 1.

Learning rate and complexity. This figure is available in color online at www.interscience.wiley.com/

journal/smj
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The horizontal axis in these graphs is the logarithm of the cumulative number of production runs.
The vertical axis is the logarithm of the squared coefficient of variation of efficiencies.

Figure 2. Learning rates and performance heterogeneity. This figure is available in color online at www.interscience.
wiley.com/journal/smj

that as complexity becomes greater, as measured
by any of the three dimensions, the slope of the
learning curve increases. The underlying intuition
is that in more complex situations, decision makers
have to sift through more data to collect the same
amount of information on the optimal way to
organize production. Hence, they tend to start at a
lower level of efficiency (relative to the maximum)
and require more production experience to reach
the potential maximum. These arguments lead to
our first hypothesis.

Hypothesis 1: The rate of learning-by-doing, as
measured by the slope of the learning curve, will
be higher in industries with greater complexity.

The model also provides a testable hypothesis
regarding the relationship between industry learn-
ing intensity and heterogeneity of performance.
Jovanovic and Nyarko (1995) define the hetero-
geneity of performance in terms of the squared
coefficient of variation of efficiency (i.e., the vari-
ance divided by the square of the mean), v(7,),
and derive an expression for this measure of

Copyright © 2009 John Wiley & Sons, Ltd.

heterogeneity

U(nr) = [1 + Vaf(’h)/[Er(Ur)]z]N_l -1 (6)

where Var(n,) = 20*,[1 + 1.0% /(0% + 1. 0%)?]
and E,(7n,) is as in Equation 3.

Figure 2 plots the logarithm of the measure
of heterogeneity in Equation 6 versus the loga-
rithm of the cumulated number of production runs.
The relative inequality for any cohort of firms is
high initially and then eventually decreases to an
asymptotic level.> The intuition behind this pat-
tern is that even though the decision makers may
all start with the same level of experience, some
receive more favorable signals than others—either
due to luck or ability—which generates inequality
among the decision makers. As time progresses,
the impact of this difference decreases, although
it never becomes zero because of the presence
of transitory disturbances. More interestingly, the

3 Also, as observed by Jovanovic and Nyarko (1995), for some
parameter values, the relative inequality increases initially before
it starts decreasing.
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heterogeneity is positively associated with com-
plexity. Irrespective of the dimension of complex-
ity, Figure 2 shows that as complexity becomes
greater, the heterogeneity of observed efficiencies
increases. The intuition is the same as before—the
difference in the quality of signals received by
the decision makers leads to differences in the
observed efficiencies. As complexity rises, the
variance of the signals increases, thereby increas-
ing the observed heterogeneity in efficiency.

Equation 6 and the plots in Figure 2 describe
the heterogeneity in efficiency within cohorts hav-
ing the same number of production runs, 7. Hence,
a point on one of the graphs in Figure 2 repre-
sents the relative inequality among firms with the
same production experience. However, the total
heterogeneity within an industry is not only a
function of variation within cohorts, but also of
differences across cohorts of varying production
experience. While the model does not provide an
explicit formula, we can infer that intercohort vari-
ation will increase with the slope of the learning
curve. (Given two cohorts with different levels
of production experience, a steeper learning curve
implies that the difference in efficiency between
these cohorts will be greater.) Figure 1 shows that
the slope of the learning curve increases with the
three dimensions of complexity in the model. Thus,
it follows that intercohort heterogeneity will also
increase in these dimensions of complexity.

This leads us to our second hypothesis.

Hypothesis 2: The heterogeneity of firm perfor-
mance will be greater in industries with higher
rates of learning.

MEASURING INTENSITY
OF LEARNING-BY-DOING

The traditional approach to measuring learning-by-
doing for a product is to estimate a power-law
function of the following form:

C=AX" (N

where C is the unit cost of the product; A is a
constant; X is a measure of experience, typically
prior cumulative production; and A > O is the rate
of learning-by-doing.

This formulation is purely empirical and is a
reduced form representation of the various pro-
cesses of learning from direct experience. The

Copyright © 2009 John Wiley & Sons, Ltd.

disadvantage of this approach is that it requires
detailed cost and production quantity data, which
are not easily available for a large number of firms.
Our method for measuring learning-by-doing fol-
lows Bahk and Gort (1993) and is a variant of
the traditional approach. Bahk and Gort (1993)
incorporate learning-by-doing within a production
function and estimate the coefficients using data
from individual manufacturing plants. Following
this approach, we can write:

Yiie = 5 (Kij)*(Lij)?; Xigo)*vii 8

where Y is the current period real value added,
measured as real revenues less real materials
expenses; @ is a constant (explained below); K
and L are real capital stock and quantity of labor,
respectively; X is prior cumulative output, a mea-
sure of experience; «, 8, and A are all positive and
less than 1; v is a plant-specific term (explained
below); and subscripts i, j, and t refer to plant ‘i,
industry ‘j,” and year ‘t,” respectively.

This formulation is an extension of the widely
used Cobb-Douglas production function. In addi-
tion to the usual inputs of capital and labor, prior
operating experience is considered an ‘input’ into
the production process in the sense that a higher
level of operating experience increases output for
any given level of capital and labor. Hence, A, the
coefficient on prior experience, denotes the indus-
try learning intensity.

We can interpret the learning coefficients
obtained from this approach in two ways. First, the
coefficient A can be interpreted in a straightforward
manner as the importance of learning (from direct
experience) in the production process. A higher
value of A implies a greater role for accumulated
experience in the production process. We could
also interpret learning to be an improvement in
‘productivity’ resulting from experience. Produc-
tivity (or more precisely, total factor productivity)
as defined in the economics literature is a measure
of the efficiency of physical resource use. Hence,
firms with higher productivity have the capability
to generate more or better quality output using the
same amount of physical resources. There are two
physical resources considered above, capital and
labor. So, we could define productivity of a plant
as Py = ®(Xij) vy, which is simply the right
hand side of Equation 8 excluding the inputs of
physical resources. The second term of this expres-
sion, Xj;*, is the increase in productivity resulting

Strat. Mgmt. J., 31: 390-412 (2010)
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from accumulated direct operating experience and
reflects learning-by-doing. The coefficient A here
is a measure of the importance of direct experi-
ence in productivity improvement. This definition
also enables us to isolate learning-by-doing from
other sources of productivity improvement. The
first term, ®;,, captures any industrywide improve-
ments in productivity (subscript ‘j” refers to indus-
try). This may occur, for instance, because of inno-
vations in the equipment used in the industry, or
because of improved practices that become avail-
able to all firms in the industry. The last term, vy,
captures any improvements in productivity result-
ing from firm-specific factors other than learning-
by-doing.

Like the traditional learning curve, this approach
is purely empirical and does not delve into the
mechanisms of learning or even changes in firm
behavior as a result of learning. Rather, it attempts
to measure learning by attributing observed
changes in firm performance to an observable
proxy for prior experience. Though a very simple
and stylized representation of the complex learning
processes at play, we believe that the coefficient
A so obtained can reasonably be interpreted as the
importance of prior experience X in the production
process. It also offers a number of other advan-
tages, some of which are specific to our context.

First, our study is set in the U.S. manufacturing
sector, and it stands to reason that manufactur-
ing processes would be important in determining
overall firm performance. Hence, the notion of a
‘production function’ makes intuitive sense, and
focusing on the importance of experience in the
production process or on productivity improve-
ment as a measure of learning is meaningful.
Another advantage of this approach is that it con-
trols for efficiency gains resulting from economies
of scale. A traditional learning curve includes only
the cumulative output, which could easily proxy
for the scale of production (Argote, 1999: 16).
By including current levels of physical inputs in
the specification, the production function controls
for the possibility that economies of scale (which
is a relation between current output and cur-
rent inputs) rather than learning-by-doing (which
depends on past output) is driving improvements.
As explained above, this approach also allows us
to control for the possibility that improvements
in manufacturing processes are a result of indus-
trywide improvements in technology rather than
direct experience. Also, under some reasonable

Copyright © 2009 John Wiley & Sons, Ltd.

assumptions, Equation 8 is approximately equiv-
alent to the traditional unit cost learning curve.
Finally, compared to a traditional learning curve
formulation, Equation 8 involves variables that are
more easily available. The main disadvantage is
that these variables are usually available only at the
plant level and not for individual products. Hence,
the learning estimates obtained using this approach
represent an average learning rate across products
manufactured within a plant.*

DATA AND EMPIRICAL ESTIMATION

Data

The data for this study comes from two sources:
Compustat and the USCB. There are two stages
of analyses in this paper. First, we use plant-level
data from the USCB to estimate the learning coef-
ficients for each industry. We then employ these
estimated industry learning coefficients as inde-
pendent variables in regressions that use Compus-
tat data to explore the impact of learning intensity
on the heterogeneity of firm performance. These
two data samples are described below.

First-stage plant-level sample (USCB data)

The first-stage sample is obtained from confidential
microdata available at the USCB. Since 1972, the
USCB has conducted a census of manufacturing
(CM) every five years. (There were two previous
censuses in 1963 and 1967.) These censuses collect
detailed plant-level data from all U.S. manufac-
turing establishments with at least one employee.
The data collected generally include the value
of plant shipments, materials and energy inputs,
employment, production hours, payments to labor,
book values of physical assets, capital expendi-
tures, inventories, and ownership (single plant firm
versus part of a multiplant firm). In addition, the
USCB also performs an Annual Survey of Man-
ufactures (ASM) that collects similar data from
a sample of U.S. manufacturing establishments.
In particular, the annual surveys are designed to
obtain an overview of the sector during the inter-
censal years, and hence place considerable weight
on large plants and plants belonging to multiplant

4 As we explain later, we select our sample in such a way
that we reduce the possibility of very different products being
manufactured in the same plant.

Strat. Mgmt. J., 31: 390-412 (2010)
DOIL: 10.1002/smj



Industry Learning Environments and Firm Performance Heterogeneity 397

firms. To account for new entrants, a sample of
new entrants is added to the ASM sample every
year.

The USCB has collated the data from all these
censuses and surveys and linked them through a
longitudinal identifier to create a dataset (some-
times called the Longitudinal Research Database,
or LRD), which it makes available to researchers
at Census Research Data Centers, subject to access
restrictions and disclosure constraints. The most
important disclosure constraint is that no data that
can identify or relate to a single firm or plant can be
disclosed. Hence, in this paper, we do not identify
statistics such as the median, minimum, or maxi-
mum for variables obtained using USCB data. For
further details on this dataset, CM, or ASM, please
refer to the USCB Web site.

Our sample is drawn from the LRD, which con-
tains over 4 million plant-year observations from
1963 to 2001. Since the USCB expends more effort
on larger plants and firms, the quality of data for
such cases is better, and they tend to have greater
continuity of observations over time. To ensure
reasonable data quality, we apply some sample
selection criteria, the most important of which are:

e Eliminating all plants that were established
before 1973 or after 1997. Because 1973 is the
first year of the annual ASM, it is not possi-
ble to reliably obtain the entry year for plants
that first appear in the 1963, 1967, or 1972 cen-
suses. In 1997, the USCB switched from the SIC
to the NAICS (North American Industry Clas-
sification System). Hence, we excluded plants
established after 1997 to minimize errors from
industry misclassifications.’

e Excluding all subsequent observations for a
plant if the gap between two consecutive sur-
vey years for that plant is more than two years.
This is done to ensure a higher reliability of our
main variable, prior cumulative output.

e Removing all plants that have a primary indus-
try specialization ratio (the output share of the
primary four-digit SIC industry in the case of
a multiproduct plant) of less than 75 percent.
This is done to ensure homogeneity within an
industry.

e Dropping outlier plants that are in the top
0.5 percentile of capital-labor ratio or of growth

5 Older plants that continued after 1997 were assumed to have
retained the same four-digit SIC code they had in 1997.

Copyright © 2009 John Wiley & Sons, Ltd.

in number of employees, shipments, or capital
expenditure.

The resulting sample contains 182,603 plant-
year observations. Summary statistics for this sam-
ple are provided in Table 1a.

Second-stage sample (Compustat data)

We use Compustat (limited to firms that have a
strictly positive total asset value) to obtain data
for testing the relationship between learning by
doing and performance heterogeneity. This sample
is obtained by aggregating firm-year level data
to the industry-year level. First, for each firm-
year observation, we compute Tobin’s g as the
ratio of market value of assets to book value of
assets, and profitability as the ratio of operating
profits before depreciation to total assets.® We
then eliminate all outlying observations in the top
and bottom one percent in terms of firm ¢ or
firm profitability. These data on firm performance
are then aggregated to obtain the dispersion in
firm ¢ and firm profitability for each three-digit
SIC industry in each year from 1973 to 2000.
We also obtained other industry level variables
such as industry R&D and advertising intensity
from Compustat. The industry classification was
based on the primary industry code. The resulting
sample contains 1,523 industry-year observations.
Summary statistics for this sample are included in
Table 1b.

Variables

The important variables used in this study are
described below. The first six pertain to the first-
stage plant-level sample, and the last relates to the
second-stage industry-year sample.

Output: Output for any plant for any year prior
to 1996 is generally defined as the sum of the value
of the plant’s shipments (total plant revenues,
deflated using four-digit SIC industry-year defla-
tors available on the National Bureau of Economic
Research Web site) and the difference between
year-beginning and year-ending deflated work in
process and deflated finished goods inventories.’

®The definition of market value follows Kaplan and Zingales
(1997).

7 This definition is identical to that implicitly used by the USCB
in its computations of plant ‘value added’ (see below). The
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Table 1a. Overall descriptive statistics (census or first-stage sample)®
Variable Mean S.d Min Max 1 2 3 4 5
1. Value added" 740  1.86
2. Capital 6.62 212 0.77
3. Labor 459 1.59 0.85%  0.75*
4. Material 729 212 0.81*  0.77  0.79*
5. Prior experience 921 224 0.83**  0.83** 0.80**  0.85***
1b Overall descriptive statistics (Compustat or second-stage sample)
1. Industry R&D intensity 0.02  0.02 0.00 0.12
2. Industry advertising 0.02  0.02 0.00 0.08 —0.08*
intensity
3. Number of firms 4415 5131 10 453  0.72= —0.09**
4. Industry sales ($ 47.59 140.40 0.44 1,498 0.12= —-0.10" 0.26™
billion)
5. Industry g range 1.65 1.36 0.093 10.86 047  0.16™ 041"  0.03
(10" -90™ pctile)
6. Industry profitability 028 0.16 0.03 1.59 0.39=  0.07* 0.38* —0.01 0.63*

range (10"-90™)

* There are two separate samples. Table 1a refers to the first-stage plant-level sample (n = 182,603 of which 170,666 are in three-digit
SIC code industries that have at least 50 plants) for which we are not able to present the minimum and maximum due to disclosure
restrictions. Table 1b refers to the second-stage sample based on Compustat data (n=1,523)

® Variables 1-5 in Table la are logarithms of their original values. Please refer text for precise definition of variables.

*p <0.1;* p < 0.05; ** p < 0.01.

Due to the unavailability of inventory data, output
for the years including and after 1996 is simply
defined as the deflated shipments.

Value added: Value added is defined as the
difference between real output and real materials
(described below).

Labor: We define quantity of labor to be the
labor hours expended in production worker equiv-
alents. Labor hours for any plant are computed by
dividing the total wage bill for the establishment
by the average hourly wage for production workers
in that establishment.

Materials: Real materials are defined as the sum
of deflated cost of material purchases, external
contract work, fuel, and electricity.

Capital stock and capital investment: We use the
perpetual inventory approach to compute real cap-
ital stock. We compute separate stocks for build-
ings (or structures) and machinery. Real capital
stock (k;) in any given year, say for machinery, is
computed as k; = (1 — d)k;_; + L + R;, where
d is an industry-year specific depreciation rate for
machinery, I is the capital investment in machinery

USCB uses slightly different definitions in some industries due
to differences in the nature of the manufacturing processes. We
follow the USCB’s definitions in all these cases. A detailed
description is available on request.

Copyright © 2009 John Wiley & Sons, Ltd.

(deflated by an industry-year specific investment
deflator for the year r — /) and R is the capitalized
value of capital equipment rentals. If an establish-
ment is not observed every year, following Olley
and Pakes (1996) we impute gross investment lin-
early (i.e., I;; = 0.5 x (I + L) x (n — 1), where
I;; is the imputed investment for period t and n is
the gap between the two survey years).

Prior cumulative output: This is used as a
proxy for accumulated operating experience. Prior
cumulative output is defined as the sum of real
output through the end of the previous period,
that is, Xj = sum(0;;, 0 ...05-1) = Xj_1 + 01,
where o is real output. If an establishment is not
observed every year, we impute output linearly
(i.e, O3 = 0.5 x (04 + 0j_pn) X (n — 1), where Oy
is the imputed output for period t and n is the gap
between the survey years).®

8 This measure of experience does not incorporate ‘organiza-
tional forgetting’ and hence, does not differentiate between a
small, old firm and a large, young firm. As rough robust-
ness checks, we estimated the learning coefficients (i) using the
cumulative output through t-2 as a measure of experience, and
(ii) including plant age as another variable in Equation 8. The
learning coefficients so estimated were highly correlated with our
baseline estimates. We also used a nonlinear specification incor-
porating organizational forgetting as a rough robustness check
and found those estimates to be highly correlated with our base-
line estimates.
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Heterogeneity of firm performance: We use firm
g and firm profitability as measures of firm perfor-
mance. Unlike most studies in the literature, we
use direct measures of performance heterogene-
ity, specifically the cross-sectional dispersion of
firm performance. We use three measures of cross-
sectional dispersion of firm ¢ and firm profitability.
As the baseline measure, we take the difference
between the 90" percentile and 10" percentile (of
firm g or profitability) in an industry during a
given year. The advantage of using this measure
as opposed to, say, variance, is that it is an ordinal
measure and hence much less affected by the pres-
ence of outliers. As robustness checks, we use the
interquartile range (or the difference between the
75" and 25" percentiles) and the standard devia-
tion of firm profitability (or ¢g) as other measures
of heterogeneity.’

Empirical estimation

In the first part of our study, we use the census data
to estimate the learning rates for each three-digit
SIC industry and to characterize the heterogeneity
in industry learning rates. In the second part, which
addresses the link between industry learning inten-
sity and the heterogeneity of firm performance,
we use the estimated industry-by-industry learning
coefficients as explanatory variables in regressions
with the range of firm performance as the depen-
dent variable.

Measuring industry learning intensity: To pro-
ceed with empirical estimation of the importance
of learning, we use ordinary least squares (OLS)
to estimate the logarithmic version of Equation 8:

Vi = @i + oK + Byl + A Xy + €5 ©)

°Note that the relation between the heterogeneity of these
performance measures and that of efficiency (the variable of
interest in the Jovanovic and Nyarko (1995) model discussed
earlier) is not necessarily monotonic. A greater dispersion of
efficiency (due to learning) does not always imply a greater
dispersion of profits and market value. More efficient firms will
generally have higher profits and market value than inefficient
firms in the same industry. (Thus, this implies that an increase
in dispersion of efficiency will increase the dispersion of profit,
all other things being equal). However, the presence of learning
may decrease the industry price, and force some of the inefficient
firms to exit (thereby decreasing dispersion). To achieve a
monotonic relationship, it needs to be the case that the profit
function is strictly increasing (and bounded) in efficiency, and
that the efficiency gains from learning are higher for more
efficient firms.

Copyright © 2009 John Wiley & Sons, Ltd.

where y is log (value added); k, I, and x are log(L),
log(K) and log(X) respectively; a is log(p); and ¢
includes log(v).

The coefficient of interest is A;, the learning
intensity of industry ‘j’.!° We estimate Equation 9
for each three-digit SIC industry that has more
than 50 plants. Estimating the production function
industry-by-industry ensures that we are excluding
the possibility that differences in returns to scale
are being spuriously captured as learning. The
terms a;; in Equation 9 are coefficients on industry-
year dummies, which capture all intertemporal
movements in the average industry productivity,
including any industrywide technology improve-
ments. Hence, the econometric identification of
the coefficients comes solely from cross-sectional
deviations from the industry-year averages and not
from changes in mean industry productivity over
time.!!

We conclude this subsection with a brief com-
ment on the link between the Jovanovic and
Nyarko (1995) model described earlier, and the
empirical estimation approach explained above. By
estimating the production function (Equation 9),
we are approximating the logarithmic version of
Equation 5. This is also equivalent to approximat-
ing the logarithmic version of Equation 3, since
the maximum efficiency term in Equation 5 is an
industry characteristic, and hence will drop out
when industry-year fixed effects are included.

10 Since we treat the learning environment to be an industry char-

acteristic, we estimate only one learning coefficient per industry.
However, learning rates may change with time. As a robust-
ness check, we estimated separate learning rates for the periods
1973-1984 and 1985-2000 (roughly equal subsamples). The
Spearman rank correlation between these two sets of coefficients
was 0.54 and between these coefficients and our baseline esti-
mates 0.80 and 0.87, respectively, all statistically significant at or
below the 0.01 percent level. Further, we estimated learning rates
separately for plants established early versus late in our sam-
ple (plants established during 1973-1984 versus 1985-2001).
These learning rates were highly correlated with the baseline
rates. Similarly, the inclusion of controls for age and entry-year
fixed effects resulted in learning rates highly correlated with the
baseline rates.

1 One potential concern could be the bias in OLS estimates
arising from the endogeneity of input choices, and survival bias.
In order to address these concerns, we developed extensions
of the Olley and Pakes (1996) and Ackerberg, Caves, and
Frazer (2006) methods of production function estimation to
estimate learning rates. Those estimates were highly correlated
with the OLS estimates. More importantly, our primary results
regarding firm performance heterogeneity remain robust to these
alternative estimates (results available on request).
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Unlike the pattern described by Equation 3 or
Equation 5, which rise asymptotically to a max-
imum level of efficiency, the production func-
tion estimates a linear function (in logarithms).
While we could estimate production functions with
additional nonlinear terms (refer to the robustness
checks section for a translog production function),
we use the simple linear version for several rea-
sons. First, it is in line with most prior empir-
ical studies of learning curves. A single learn-
ing rate for each industry also makes it easier to
understand differences across industries and rank
industries based on learning rates. Moreover, the
model outlined above is only a stylized version
of learning processes, and a linear function is the
natural first approach to approximating the pro-
cesses.

Finally, the empirically estimated learning rate
will be affected by the distribution of experience
within the industry. For any given set of parame-
ter values, industries with more mature firms will
tend to exhibit lower estimated learning rates than
industries with younger firms. We performed some
indicative simulation analysis of the link between
the model and the estimated learning rate. Specif-
ically, we estimated the learning rate by fitting
a linear function to Equation 3 under different
assumed parameter values and experience distri-
butions. These simulations (available on request)
suggest that for any given set of parameter val-
ues, an industry composed entirely of mature firms
would demonstrate a learning rate roughly one-
third lower than an industry with firms distributed
evenly across experience cohorts, and an industry
with predominantly young firms would demon-
strate a learning rate about 10 percent higher.
The simulations also suggest that such variation
is small compared with the impact of changes in
the complexity parameters. Moreover, our data do
not show significant interindustry differences in
the age distribution. The mean plant age in an
industry varies from 3.08 years to 9.53 years, and
the mean within-industry variance in age is com-
parable to the variance in the mean age across
industries (4.04 years versus. 5.19 years). The dis-
tribution of experience exhibits a similar pattern.
Hence, interindustry differences in plant age or
experience are unlikely to have much effect on the
estimated rates of learning.

Interindustry heterogeneity in learning: It is dif-
ficult to obtain good empirical measures of pro-
cess complexity for such a large sample. Hence,

Copyright © 2009 John Wiley & Sons, Ltd.
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we rely on rather simple proxies that are easily
available. Industries with greater capital-intensity
have been associated with greater process com-
plexity (Lieberman, 1984). Also, it is reasonable to
believe that R&D-intensive industries have more
complex processes and involve a higher degree
of knowledge tacitness. Similarly, industries with
high advertising intensity are likely to be dif-
ferentiated, thus reducing the amount of learn-
ing that firms can achieve from their competitors.
Finally, industry wages may reflect the underlying
skill requirements, and higher wages may proxy
complexity.

To formally test Hypothesis 1, we adopt the
following regression model, which includes these
proxies interacted with x;, the cumulative output
measure:

Vi = & + @K + Bl + Axi + A.Ciexie
+ A2 Wi Xige + Az Ry Xije + AgAge Xyt

=+ & (10)
where C is industry capital intensity (capital stock
to employment ratio); W is industry wages; R is
industry R&D intensity (R&D expenditure divided
by sales); and A is industry advertising intensity
(advertising expenditure divided by sales).

As in the industry-specific learning regressions,
the unit of analysis is plant year, and we allow for
industry-year dummies a;. For this analysis, indus-
try R&D and advertising data are obtained from
Compustat. We use OLS to estimate Equation 10,
with plant fixed effects and instrumental variables
specifications as robustness checks.

Industry learning intensity and heterogeneity of
firm performance. In order to examine how indus-
try learning is related to heterogeneity of firm per-
formance (Hypothesis 2), we use regressions of the
following form:

T = & + bé] + Cl.Rj[ + C2.Ajt + C3.Cj1

+C4.Sjt +C5.th +C(,.Pjt +8jt (11)
where 7y is 90™ to 10" percentile range of firm
performance, either firm ¢ or firm profitability, in
industry j during year t; éj is the estimated industry

learning intensity from Equation 9; R is indus-
try R&D intensity (R&D expenditure/sales); A is
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industry advertising intensity (advertising expen-
diture/sales); C is industry capital intensity (total
assets/sales); P is average industry profitability
(operating profits/total assets); N is the number of
firms in an industry; and S is industry size mea-
sured as total industry sales.

Note that the level of analysis here is the indus-
try year. For this analysis, we rely on data from
Compustat; the only variable in Equation 11 that
comes from outside Compustat is the estimated
learning intensity.

A brief note on the choice of control variables
is in order. Intuitively, our earlier arguments on
the interindustry heterogeneity in learning rates
also apply to any factor that increases complex-
ity. R&D, advertising, and capital intensity can
logically be classified as such factors and would
tend to increase the heterogeneity of firm perfor-
mance. For instance, industries with high R&D
or high advertising intensity may be quite differ-
entiated and hence, performance more dispersed.
Furthermore, these are sunk costs, which increase
the incentives for firms to stay in the market
once they have incurred those costs (Gschwandt-
ner and Lambson, 2006), thereby increasing inter-
firm heterogeneity. Average industry profitability
may reflect inherent risk and hence may be asso-
ciated with a higher variance of returns. Finally,
we add the number of firms and industry size
as factors that may potentially increase measured
heterogeneity.

RESULTS

Interindustry heterogeneity
in learning-by-doing

Table 2 presents the results of estimating Equation
9 for the pooled sample. Model 1 is a simple Cobb-
Douglas production function, excluding the prior
experience term that captures learning-by-doing.
Model 2 expands on Model 1 by adding the prior
experience term. The coefficient on prior cumula-
tive output is 0.26, which implies a 19.7 percent
gain in productivity for each doubling of cumula-
tive output.'?> This model, however, does not con-
trol for the possibility that the rate of technological
improvement varies across industries. For instance,
firms in an industry with significant technologi-
cal advances may show productivity improvements

12 This is computed as 2°%.

Copyright © 2009 John Wiley & Sons, Ltd.

even without learning-by-doing. A robust approach
to address this is to include a dummy variable for
each industry-year combination, which will control
for all intertemporal changes (including technolog-
ical improvements) in the average industry produc-
tivity. While our baseline definition of industry is
at the three-digit SIC level, the size of our pooled
sample permits us to follow a far more conser-
vative approach and use four-digit SIC industry-
year fixed effects. Model 3 includes 9,967 sepa-
rate four-digit SIC industry-year dummies, which
control for all productivity improvements in each
four-digit SIC industry (and consequently, in each
three-digit SIC industry). The estimated learning
coefficient falls to 0.23 when these controls are
added.

We then estimated Equation 9 using OLS for
each of the 117 three-digit SIC industries that has
more than 50 plants. Models 4-1 to 4—117 allow
each industry to have its own coefficients on cap-
ital, labor, and prior cumulative output. They also
allow for year dummies within each three-digit
SIC industry and hence, control for three-digit SIC
industry-wide productivity improvements. Given
space constraints, we present only the coeffi-
cients on cumulative output from these models
in Appendix A (Column 3). Figure 3 presents a
histogram of the coefficients on cumulative out-
put. As expected, there is a significant variation in
learning intensities across industries, ranging from
just above zero to almost 0.60 with an average of
0.22 (almost identical to the estimate for the pooled
sample in Model 3).

We now try to characterize the heterogeneity
in learning intensity. From Appendix A, we can
see that the top six industries based on the OLS
learning coefficient are SIC 357 (computers), 283
(pharmaceuticals), 291 (petroleum refining), 386
(photographic equipment and supply), 287 (agri-
cultural chemicals), and 289 (miscellaneous chem-
icals). The lowest in the list are SIC 317 (leather
goods), 322 (glass products), 262 (paper mills),
228 (yarn and thread mills), and 311 (leather
tanning). This list suggests a positive associa-
tion between complex, knowledge-intensive and
capital-intensive settings, and the rate of learning-
by-doing.

To test this more formally, we estimate Equation
10 using OLS. Again, our pooled sample permits
us to adopt a more conservative approach and use
a finer four-digit SIC industry definition. The vari-
ables of interest are the interaction terms between
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Table 2. Pooled learning coefficients

N. Balasubramanian and M. B. Lieberman

Variable Model 1 Model 2 Model 3 Models 4-1 to
(OLS) (OLS) (OLS) 4-117 (OLS)
1. Capital 0.271* 0.12* 0.07+ —0.12 to 0.29
(0.003) (0.003) (0.003) (Details
available on
request)
2. Labor 0.710* 0.59* 0.66"* 0.34 to 0.98
(0.004) (0.004) (0.004) (Details
available on
request)
3. Prior experience 0.26"* 0.23* 0.00 to 0.60
(0.004) (0.004) (Details
available in
Appendix A)
4. Fixed effects Year Year Four-digit SIC industry year Three-digit SIC
industry year
N 213,256 170,666 170,666 83 to 7,244
(Details
available on
request)
R? 0.80 0.81 0.85
Adjusted R* 0.80 0.81 0.85

* The unit of analysis is plant year. Value added is the dependent variable. Coefficients on dummies not presented.
® Models 4-1 to 4-117 are 117 separate OLS estimations along the lines of Model 2, one for each three-digit SIC code industry.
*p <0.1; *p < 0.05; ** p < 0.01. Robust standard errors in parentheses.

T T T T T T T

0 A 2 .3 4 5 .6
Estimated coefficient on cumulative output (Models 4-1 to 4-11)

Figure 3. Interindustry heterogeneity in learning-by-
doing. This figure is available in color online at www.
interscience.wiley.com/journal/smj

prior experience and industry factors. Models 5
and 6 in Table 3 use a larger sample for which
we have complete data on industry wages and
the capital-labor ratio, omitting the industry R&D
and advertising intensity terms. Model 5 includes
only year indicators while Model 6 includes a
full set of industry-year dummies. In both cases,

Copyright © 2009 John Wiley & Sons, Ltd.

the learning coefficient is significantly higher in
industries with greater capital intensity. The inter-
action effect of industry wages on prior experience
becomes insignificant once industry-year effects
are controlled for.

Model 7 estimates Equation 10 with a smaller
sample for which we have complete industry R&D
and advertising data from Compustat. The coef-
ficient on prior experience is significantly higher
in industries with higher capital-labor ratio and
greater R&D and advertising intensity. Models
5-7 assume that the coefficients on capital and
labor are the same across industries; Model 8
repeats the tests in Model 7, allowing the coef-
ficients on capital and labor to vary across two-
digit SIC industries. The results in Model 8 are
not substantially different from Model 7. Finally,
we estimate Models 9 and 10 to check if these
results are robust to the inclusion of plant fixed
effects. Model 9 does not include any of the
direct terms while Model 10 includes them. While
the effects decrease considerably in magnitude (as
expected) in Model 9, the direction and statisti-
cal significance of the results persist. In Model 10,
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the significance of the interaction terms increase
considerably and the direct terms are negative.
This suggests that in industries with high capital,
R&D, or advertising intensity, plant productivity
is initially low but rises steeply with experience.
Finally, we used an instrumental variables specifi-
cation with once-lagged variables as instruments.
The economic substance and statistical significance
of these results (available on request) were very
similar to those in Models 7 and 8.

To summarize, we find that the learning rate
increases with industry capital intensity, R&D
intensity, and advertising intensity, thus confirming
Hypothesis 1.

Industry learning intensity and firm
performance heterogeneity

We now examine the important question of how
these variations in industry learning intensity are
related to firm performance heterogeneity. Figure 4
gives an idea of the potential linkages. It presents
the distributions of firm profitability and firm ¢
(relative to the industry-year average) for ‘high
learning’ (i.e., industries with learning rates above
the median learning rate) and ‘low learning’ indus-
tries. Figure 4 shows that both measures of firm
performance have greater dispersion in high learn-
ing industries. To test this formally, we use the
industry estimated learning coefficients (shown in
Appendix A) as independent variables in Equation
11, with the range of firm performance within
an industry as the dependent variable. Recall that
the unit of analysis in Equation 11 is the industry
year.

Table 4 presents the results of estimating
Equation 11 for our two measures of performance
heterogeneity. Since all the variables except the
learning coefficient have very skewed distribu-
tions, we use their logarithms rather than the orig-
inal values. Model 11 uses the range of firm prof-
itability as the dependent variable while Model 12
uses the range of firm g. The industry learning
intensity coefficient is 0.926 in Model 11. This
implies that the difference between the ‘best per-
formers’ (top 10%) and the ‘worst performers’
(bottom 10%), as measured by relative profitabil-
ity, is considerably greater in industries with high
learning. Similar results hold when we use firm ¢
as a measure of firm performance. In both cases
the coefficient on industry learning is positive and
statistically significant at the one percent level.

Copyright © 2009 John Wiley & Sons, Ltd.

These results provide strong support for Hypoth-
esis 2, and demonstrate that the heterogeneity of
firm performance increases with industry learning
rate.

Turning to the other coefficients in the regres-
sions, sunk costs (particularly R&D and advertis-
ing, and to an extent, capital intensity) are also pos-
itively linked to increased dispersion of firm per-
formance. This is broadly in line with Gschwandt-
ner and Lambson (2006), who found that sunk
costs tend to increase profit variability in an indus-
try, and with theoretical industry models in the
economics literature such as Hopenhayn (1992)
that predict increased productivity dispersion due
to higher sunk costs.!*> The mean industry prof-
itability appears to be associated with increased
heterogeneity of firm value (which is consistent
with a higher risk-higher return story). Counterin-
tuitively, mean industry profit is negatively asso-
ciated with the dispersion of firm profit, but this
could be an accounting artifact due to the inclu-
sion of depreciation within the measured profit
rate. Another counterintuitive result is that large
industries (by industry sales) tend to have lower
heterogeneity. We do not have a good expla-
nation for this except, perhaps, that they may
be mature industries. Industries with many firms,
in line with our intuition, show a wider disper-
sion.

Robustness checks

We performed a series of tests to confirm that we
are most likely measuring the effect of learning-
by-doing and that our subsequent results on the
heterogeneity of firm performance are robust to
alternative specifications. Briefly, the tests show
that factors such as survivor bias, sample selection,
R&D investments, measurement errors in capital,
choice of production function form, and industry
life cycle effects are not driving the observed het-
erogeneity in learning rates. Details are provided
in Appendix B and Table 5.

We tested the robustness of our results on
the connection between learning and firm per-
formance by running the same type of regres-
sions as in Table 4, but with different measures of
performance heterogeneity, levels of aggregation,

13 In his working paper, Rivkin (1998) also finds that the disper-
sion of firm profit rates is higher in industries with opportunities
for R&D and product differentiation.
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Distribution of relative firm profitability
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Industry learning environments and firm performance heterogeneity. This figure is available in color online

at www.interscience.wiley.com/journal/smj

Table 4. Learning-by-doing and heterogeneity in firm performance®

Dependent Model 11 Model 12
variable - -
Profit dispersion q dispersion

1. Industry learning intensity 0.926** 141
(0.10) 0.14)

2. Industry R&D intensity 0.050"* 0.102**
(0.01) (0.01)

3. Industry advertising intensity 0.040" 0.070*
(0.01) (0.01)

4. Industry profitability (mean) —0.131" 0.207**
(0.04) (0.05)

5. Industry capital intensity —0.110* 0.113*
(0.05) (0.06)

6. Industry sales —0.117* —0.117*
(0.01) (0.01)

7. Industry number of firms 0.251"* 0.268*
(0.02) (0.02)

8. Fixed effects Year Year

N 1,523 1,523

R? 0.38 0.55

Adjusted R? 0.37 0.54

* The unit of analysis in all these regressions is three-digit SIC industry year. All variables except the industry learning intensity are
logarithms of their original values. The dependent variable is the (logarithm of) difference between 90" and 10" percentiles of either

firm profitability or firm q. Coefficients on dummies not presented.

*p <0.1; ™ p < 0.05; ™ p < 0.01. Robust standard errors appear in parentheses.

choice of time periods, assumptions about error
correlation structures, and others. Table 5 presents
the coefficients on the learning estimates from
those regressions. (Each line in Table 5 is com-
parable to line 1 from Table 4; details available
on request). In all of these regressions, learning
shows a significant positive association with the
heterogeneity of firm performance.

Copyright © 2009 John Wiley & Sons, Ltd.

DISCUSSION AND CONCLUSION

It is widely accepted and documented in the
strategy literature that the industry environment
affects competitive heterogeneity. In addition,
many studies have shown that the rate of orga-
nizational learning varies greatly across firms and
industries. Nevertheless, given data limitations the
connections between learning intensity and the
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industry competitive environment have not been
systematically explored. Our paper provides quan-
titative evidence that supports the case for treating
learning intensity as a fundamental characteristic
of the industry, much as R&D and advertising.
Furthermore, our paper facilitates empirical imple-
mentations of such a concept by providing reason-
ably comparable estimates of learning intensity for
a wide range of industries, encompassing most of
the U.S. manufacturing sector.

To our knowledge, this study is the first to pro-
vide a quantitative comparison of learning rates
across such a broad set of industries. The range of
learning slopes (slope computed as 27*, where A
is the estimated learning coefficient) varies from
close to 100 percent (or no learning) in SIC 262
(paper mills), to a maximum of 68 percent in SIC
283 (drugs) and 66 percent in SIC 357 (comput-
ers)." This is comparable to the range of estimates
in prior studies. For instance, the survey by Dutton
and Thomas (1984) found that the median learn-
ing slope in about 22 industry-specific studies was
about 80 percent and the range was from 55 per-
cent to 110 percent.

Our study goes beyond simply establishing the
heterogeneity in learning rates to identify some
broad patterns in these rates, as indicated in
Table 3. Even within the limited interpretation per-
mitted by our crude proxies, the results are con-
sistent with the argument that learning from own
experience may be more important in environ-
ments where complexity is high. Knowledge trans-
fers between firms, and perhaps even within firms,
is naturally harder in such environments, and firms
may have to rely more on their experience. Though
intuitive, this study is the first attempt to quantify
these patterns in a systematic way across a broad
sample of industries.

The second contribution of our paper is
to demonstrate a robust association between
the industry learning intensity and the cross-
sectional heterogeneity of firm performance. The
results in Table 4 show that firm performance is
more heterogeneous in high learning industries.
More importantly, the economic significance of
this effect seems to be large. Based on the
coefficients in Model 11, an increase of one
standard deviation in the learning coefficient
(0.097) is associated with a 31 percent (=

14 A learning slope of x percent implies that a doubling of cumu-
lative output leads to a (100-x) percent increase in productivity.

Copyright © 2009 John Wiley & Sons, Ltd.
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0.926 x 0.097/0.2891) increase in the profitability
range.”> These are comparable to or even
higher than the effect of an increase in R&D
or advertising intensity. For instance, using
coefficients from Model 11, an increase in R&D
intensity by one standard deviation from the
mean (i.e., from 0.0217 to 0.0443) is associated
with a 12 percent (= 0.050 x [In(0.0443) —
In(0.0217)]/0.2891) increase in profitability range.

Thus, we have shown that the cross-sectional
variation in firm performance increases with the
learning intensity of the industry. This is con-
sistent with the predictions of the Jovanovic and
Nyarko (1995) model presented in the early part
of this paper. More broadly, the evidence points to
a story more like the uncertain learning-by-doing
in Levitt and March (1988) and Levinthal and
March (1993) rather than the sure shot learning
curve often assumed in the economics literature.
If uncertain learning creates winners that grow to
be bigger than others, the size-weighted average
firm performance should be significantly higher in
industries with high learning. Indeed, the asset-
weighted industry profit ratio is about 14 percent in
high learning industries compared to 11 percent in
low learning industries. The asset-weighted indus-
try average q is 1.29 in high learning industries,
versus. 1.08 in low learning industries.

Although we have focused on how learning
intensity affects the variance of firm profits and
q, Figure 4 suggests that learning intensity may
also impact the skewness of these distributions.
Regressions similar to those in Table 4 with the top
and bottom deciles of the firm profit distribution
as the dependent variable show that the increased
dispersion in firm profits is almost entirely due
to a downward shift in the bottom10th percentile
of profits rather than an upward shift in the 90th
percentile. In contrast, the heterogeneity of firm q
appears to be mostly due to an upward shift in
the 90th percentile rather than a decrease in the
10th percentile.'® These results imply that firms in
industries with high learning intensity may show
losses during early years of operation, though

15 Similar calculations using the Olley and Pakes (1996) and
Ackerberg et al. (2006) methods yield estimates of 24 percent
and 29 percent (results available on request).

16 The unweighted industry average profit is 9.58 percent for low
learning industries and 7.08 percent for high learning industries.
The corresponding unweighted industry average gs are 1.01 and
1.42.
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Table 5. Learning-by-doing and heterogeneity in firm performance: robustness checks®

Dependent Profit q

variable dispersion dispersion

1. 75" to 25" percentile as dependent variable 0.717 1.34%
(0.10) (0.13)

2. Standard deviation as dependent variable 0.170 1.32%
(0.02) 0.14)

3. Learning ranks instead of coefficients® 0.396* 0.649
(0.06) (0.08)

4. Two learning categories - high versus low instead of coefficients (based 0.123* 0.187

on median learning rate) (0.02) (0.03)

5. Including only very focused firms® 1.01* 1.05*
(0.20) 0.24)

6. Four-digit SIC as industry definition 0.452* 0.951*
0.11) (0.16)

7. Excluding industries ending with ‘9’ and including # of four-digit SIC 0.826™* 1.25%

codes as control (0.11) (0.15)

8. Without taking logarithms 0.264* 2.00%*
(0.04) (0.32)

9. Dependent variable not logged 0.351* 2.87*
(0.04) 0.31)

10. Excluding industry years with <25 firms 0.888* 1.26*
(0.13) (0.16)

11. Clustering standard errors at three-digit SIC level 0.926* 1.41%
0.21) 0.27)

12. Excluding the two highest and two lowest learning industries 0.726"* 1.28*
(0.16) 0.21)

13. Including two-digit SIC year fixed effects 0.974 1.39%
(0.14) (0.20)

14. Time period 1973-1984¢ 0.640* 240"
0.17) (0.23)

15. Time period 1985-2000° 0.613* 1.50*
(0.15) 0.21)

16. Learning coefficients with R&D controls' 0.349* 0.633
(0.06) (0.08)

* This table provides the results of robustness checks that use the same type of regressions as in Table 4, but with different measures
of performance heterogeneity, level of aggregation, choice of time periods, etc. Each line in this table is comparable to line 1 from
Table 4. Only the coefficients and standard errors on industry learning intensity are presented. Coefficients on other variables are

available on request.

®The coefficients and standard errors have been multiplied by 100 for presentation purposes.
¢ This regression includes only firms whose largest segment (by sales) accounts for at least 95% of the total sales. Due to nonavailability

of data before 1984, this covers the period 1984 to 2000.

4 The standard errors are computed allowing for arbitrary autocorrelation of errors within a three-digit SIC industry.
¢ These use learning coefficients estimated for the relevant time period as an independent variable.
f Learning coefficients used in this regression are estimated after controlling for firm specific R&D expenditure (the sample changes

because not all firms report R&D).

expected future returns (as reflected by Tobin’s g)
are high.

As with all empirical studies, our analysis comes
with a number of limitations. We adopt a highly
aggregated view of learning by focusing on learn-
ing intensity at the industry level. Clearly, there is
likely to be considerable heterogeneity in products
and learning rates within industries, perhaps even
greater than the interindustry variations. Moreover,

Copyright © 2009 John Wiley & Sons, Ltd.

our study does not shed any light on the
mechanisms of learning; for example, factors
within organizations such as training and engi-
neering activities (Adler and Clark, 1991), and
structures and routines (Nelson and Winter, 1982)
that may affect learning. Furthermore, it is to
be expected that the meaning and context of
organizational learning vary significantly across
(and within) industries. Since this paper follows a
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purely empirical approach and infers the
importance of learning by examining the coef-
ficient on cumulative output, the findings from
this study are necessarily a very simplified and
stylized representation of the learning environ-
ment. Furthermore, learning-by-doing is only one
form of organizational learning (Levitt and March
1988; Malerba 1992). There are many other forms
of learning, such as learning from others, which
are not examined in this study. Finally, there are
measurement issues that commonly afflict studies
of productivity estimation. Notwithstanding these
limitations, we believe that this aggregate approach
provides a ‘big picture’ view of the heterogene-
ity in industry learning-environments that comple-
ments detailed microlevel studies of learning.
Although not a limitation per se, the interpre-
tation of the learning coefficient deserves some
discussion. As we measure it, the learning coef-
ficient does not reveal two aspects of learning that
have been considered in prior studies. First, it does
not tell anything about spillovers of learning across
firms. Firms can apply experience gained from
one product to cost reduction or quality improve-
ments in other (perhaps, similar) products (Argote,
1999; Benkard, 2000; Irwin and Klenow, 1994)
and it is reasonable to expect that learning ‘spills
over’ from one firm to another. In our approach,
all improvements resulting from such industrywide
learning spillovers are captured by the industry-
year dummy variables. As an extreme, an industry
where some firms learn considerably from experi-
ence but all knowledge so generated is transferred
to other firms immediately (thereby leaving the rel-
ative performances unchanged) would be measured
as having a zero rate of learning. However, in such
a case, learning rates would not affect firm per-
formance and a ‘zero’ learning coefficient would
not entirely be meaningless. The second issue is
organizational forgetting. It has been established
that the knowledge accumulated through learning
depreciates rapidly (Argote, 1999; Benkard, 2000).
The use of a single learning coefficient clearly
masks underlying differences in the rate of depreci-
ation. A low learning coefficient could mean either
a low learning rate combined with a low rate of
forgetting, or a high learning rate combined with
rapid depreciation. Unfortunately, our data do not
permit us to reliably estimate the rates of forget-
ting. Even so, the learning coefficient can still be
meaningfully interpreted as ‘net rate of learning’

Copyright © 2009 John Wiley & Sons, Ltd.

or as the ‘net importance’ of experience in the pro-
duction process.

The present study establishes basic relationships
between industry learning and firm performance,
but many extensions are possible. One would be
to examine the mechanisms that explain the link
between learning intensity and the heterogeneity of
firm performance. We have provided some poten-
tial theoretical reasons for this association; how-
ever, their importance must be sorted out. More
broadly, the learning estimates from this study can
be used to analyze how variations in industry learn-
ing rates affect firm behavior. Strategic choices
that may be affected by learning include incen-
tive structures, governance structures, investments
in innovation, capital and technology, and perhaps
even organizational structures and processes. For
instance, a bigger role for learning from experience
may require an incentive structure oriented toward
long-term performance goals rather than short-term
ones. Another interesting line of inquiry would be
to generalize our findings to examine how varia-
tions in the knowledge acquisition processes (e.g.,
through own learning versus interfirm spillovers
versus intrafirm spillovers, etc.) across industries
affect the observed heterogeneity.

Heretofore, researchers have been constrained
by the nonavailability of learning rate data needed
to address such questions across a wide range of
industries. This study provides industry-specific
estimates that can be used to further explore the
role of learning by doing, particularly in broad,
interindustry contexts. We invite others to build
upon this work.
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APPENDIX A: INDUSTRY-BY-INDUSTRY LEARN-

ING COEFFICIENTS

SIC Rank OLS
(OLS) Coeft. Std error

201 99 0.148 (0.02)
202 79 0.180 (0.02)
203 18 0.321 (0.02)
204 30 0.273 (0.02)
205 23 0.294 (0.02)
206 58 0.207 (0.04)
207 17 0.323 (0.04)
208 21 0.300 (0.02)
209 38 0.260 (0.02)
221 101 0.145 (0.07)
222 77 0.181 (0.04)
224 98 0.151 (0.08)
225 72 0.187 (0.02)
226 94 0.163 (0.03)
227 16 0.326 (0.05)
228 116 0.041 (0.03)
229 55 0.213 (0.03)
231 26 0.284 (0.04)
232 92 0.165 (0.02)
233 29 0.278 (0.01)
234 46 0.241 (0.04)
235 32 0.271 (0.08)
236 40 0.254 (0.03)
238 35 0.266 (0.04)
239 25 0.286 (0.02)
241 56 0.213 (0.01)
242 64 0.202 (0.01)
243 61 0.205 (0.01)
244 110 0.093 (0.02)
245 109 0.108 (0.02)
249 82 0.177 (0.02)
251 87 0.170 (0.01)
252 67 0.198 (0.03)
253 76 0.182 (0.04)
254 96 0.154 (0.02)
259 53 0.215 (0.03)
262 115 0.054 (0.04)
265 69 0.192 (0.01)
267 37 0.260 (0.03)
281 20 0.310 (0.02)
282 9 0.385 (0.03)
283 2 0.547 (0.03)
284 10 0.372 (0.03)
285 15 0.342 (0.03)
286 8 0.388 (0.03)
287 6 0.413 (0.03)
289 5 0.413 (0.02)
291 3 0.451 (0.10)
295 52 0.224 (0.02)
299 11 0.369 (0.05)
305 19 0.313 (0.05)
306 88 0.169 (0.02)
308 48 0.237 (0.01)
311 117 0.005 (0.07)
313 39 0.256 (0.09)
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APPENDIX A: (Continued)

SIC Rank OLS
(OLS) Coeff. Std error

314 43 0.246 (0.03)
316 103 0.144 (0.08)
317 113 0.076 0.07)
319 104 0.127 0.07)
321 78 0.181 (0.05)
322 114 0.067 (0.03)
323 73 0.185 (0.02)
324 7 0.389 (0.08)
325 12 0.360 (0.03)
326 97 0.152 (0.03)
327 36 0.265 (0.01)
328 31 0.272 (0.04)
329 14 0.354 (0.02)
331 90 0.169 (0.02)
332 85 0.172 (0.02)
333 45 0.241 (0.05)
334 54 0.214 (0.05)
335 68 0.194 (0.02)
336 33 0.269 (0.03)
339 106 0.123 (0.03)
341 22 0.299 (0.02)
342 75 0.184 (0.02)
343 59 0.207 (0.03)
344 80 0.178 (0.01)
345 74 0.184 (0.02)
346 84 0.173 (0.02)
347 63 0.202 (0.01)
348 83 0.174 (0.05)
349 71 0.189 (0.01)
351 86 0.170 (0.04)
353 89 0.169 (0.02)
354 62 0.202 (0.01)
355 51 0.227 (0.02)
356 47 0.237 (0.01)
357 1 0.602 (0.03)
358 44 0.246 (0.02)
359 93 0.163 (0.01)
361 24 0.290 (0.02)
362 66 0.200 (0.02)
363 105 0.126 (0.04)
364 49 0.233 (0.02)
365 107 0.122 (0.04)
366 50 0.229 (0.03)
367 13 0.355 (0.02)
369 28 0.278 (0.02)
371 70 0.191 (0.01)
372 95 0.157 (0.02)
373 108 0.108 (0.02)
374 102 0.144 (0.05)
375 91 0.166 (0.06)
379 112 0.091 (0.02)
381 27 0.280 (0.07)
382 81 0.178 (0.02)
384 34 0.267 (0.02)
385 111 0.093 (0.04)
386 4 0.416 (0.04)
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APPENDIX A: (Continued)

SIC Rank OLS
(OLS) Coeff. Std error

391 42 0.250 (0.03)
393 100 0.146 (0.04)
394 41 0.251 (0.02)
395 65 0.202 (0.05)
396 57 0.209 (0.04)
399 60 0.206 (0.02)
Mean 0.227

Std. dev 0.097

Min 0.005

Max 0.602

APPENDIX B: ROBUSTNESS CHECKS

Are we measuring learning-by-doing?

We tested various other phenomena that might
manifest as a high coefficient on cumulative out-
put. While we cannot rule out all possible alterna-
tives, some potentially important ones are
addressed below.

Survivor bias and sample selection: With OLS,
endogeneity of exit may bias the measured coeffi-
cient on cumulative output. If accumulated expe-
rience helps firms withstand bad ‘performance
shocks’ and thus reduces the probability of exit,
then the measured coefficient will be biased down-
ward. On the other hand, if accumulated experi-
ence has no effect on exit, then the bias may be
upward, the argument being that only ‘good’ firms
survive and they would tend to have both higher
cumulative output and higher productivity, result-
ing in a high ‘learning’ coefficient. However, these
arguments do not appear to hold in our study for
several reasons. If this argument were true, we
should see a strong positive correlation between
the turnover rate of firms (entry rate + exit rate)
and our measured ‘learning.” However, we see no
statistically significant relationship between indus-
try turnover rate and the measured learning rate
(results available on request). Also, the Olley and
Pakes (1996) and Ackerberg et al. (2006) estimates
that correct for these potential biases are highly
correlated with estimates presented here (results
available on request). Further, the results sug-
gest that learning is positively correlated with the
cross-sectional heterogeneity of firm performance
within an industry. If high measured learning rates
reflected more selection, then one should observe a

Copyright © 2009 John Wiley & Sons, Ltd.

negative association between the measured learn-
ing rates and the cross-sectional heterogeneity of
firm performance (as more firms are selected out
in industries with high measured learning).

We also tested the robustness of our results
to the choice of our sample. Using a sample
that includes only ASM plants (which have better
quality data) and relaxing our condition that plants
not have a gap of more than two years between two
consecutive years, produced learning estimates that
were highly correlated with our baseline estimates
(results available on request).

R&D investments: Sinclair et al. (2000) argue
that it is specific R&D efforts that cause learning-
by-doing. If all the learning were due to R&D,
we should observe no learning once we include
R&D as a control. Without controlling for R&D,
we would observe high R&D industries to have
high learning. Since the industries with high mea-
sured learning in our study are R&D intensive
industries, we attempt to rule out R&D as solely
driving the results. However, we lack detailed
data on plant-level R&D and hence, we use firm-
level R&D from Compustat as controls and reesti-
mate the learning coefficients. The rank correlation
between this set of learning coefficients and our
original estimates is 0.67 and statistically signifi-
cant at the 0.01 percent level. Furthermore, using
these revised learning coefficients did not change
the subsequent results on firm performance hetero-
geneity (Row 16 in Table 95).

Measurement errors in capital: It is well known
that there are errors with measuring capital. If
it were true that such measurement errors were
more prevalent in some industries (e.g., in high-
technology industries), then we may observe a high
measured rate of learning in such industries. While
there is no known way to completely rule this out,
we reestimate our learning coefficients using an
alternative measure of capital instead of the per-
petual inventory method used in the study. Specif-
ically, we use the year-end book value of assets
and find that the resulting learning coefficients are
highly correlated with our original estimates.

Industry life cycles: The need for learning-by-
doing may be intricately linked to industry life
cycles. For instance, early in the industry life
cycle, firms may need to learn mostly on their
own. Furthermore, this is also a period of great
uncertainty and consequently higher heterogeneity
of performance. As the industry matures, domi-
nant design(s) emerge and firms may be able to
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benefit from others, thereby reducing the need
for own learning. Concomitantly, the uncertainty
also decreases, reducing performance heterogene-
ity. While this is certainly consistent with our argu-
ments (note that we do not make any exhaustive
claims over what gives rise to learning-by-doing),
that we find exit rates to be uncorrelated with learn-
ing intensities suggests that industry life cycles are
not the sole driving factor here.

Alternative production functions: We tested the
robustness to relaxing the Cobb-Douglas produc-
tion function form adopted here. Specifically, we
estimated using OLS, a version of the translog
production function (y;, = ay + &k + o (kij)?
+B;-Li + B (150° + v (ki) () + Aj- X + &30
These learning coefficients were highly correlated
with our baseline estimates.

Learning-by-doing and heterogeneity of firm
performance

In order to check the robustness of these results,
we used the same type of regressions as in Table 4,
but with different measures of performance hetero-
geneity, level of aggregation, choice of time peri-
ods, assumptions about error correlation structures,
and others. Table 5 presents the results of robust-
ness checks on this aspect. Each line in Table 5 is
comparable to line 1 from Table 4.

Alternative measures of heterogeneity: So far,
we have used the difference between the 90™ and
10™ percentiles as the measure of firm performance
heterogeneity. In Table 5, Rows 1 and 2 use the
interquartile range (difference between the 75
and 25" percentiles) and standard deviation of
firm performance respectively. We observe that
the coefficient on learning intensity is strongly
positive.

Ordinal measures of learning intensity: In our
baseline results, we directly used the estimated
learning intensities as measures of learning-by-
doing. Since the estimated learning intensities vary
across different specifications, we check if using
ordinal measures makes a difference. Row 3 of
Table 5 uses the industry learning ranks (based on
the estimated learning coefficient) instead of the
estimated learning intensities. Row 4 uses a simple
dummy variable that divides industries into high
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learning and low learning based on the median
estimated learning coefficients. Once again, the
results are statistically significant.

Excluding diversified firms: Our baseline results
use the firm’s primary SIC code to assign firms
to industries. However, many firms in Compustat
are diversified and hence, it may be argued that it
is inappropriate to use a single learning coefficient
for such firms. Using the Compustat business seg-
ments data from 1984 to 2000, we select firms
that have a single three-digit SIC segment that
comprises at least 95 percent of their total sales
and estimate Equation 11 for these firms. Row 5
of Table 5 presents the results, which are strongly
positive and statistically significant.

Level of aggregation: Since it may be argued
that the three-digit SIC level is a very high level
of aggregation, we estimate learning intensity at
the four-digit SIC level and repeat our test. Row
6 of Table 5 shows that even with a finer industry
definition, our results hold. Another possible con-
cern is that the definitions of some three-digit SIC
industries are simply much more heterogeneous
than others. To rule this possibility out, (a) we
excluded all three-digit SIC industries ending with
‘9’ (usually ‘not elsewhere classified’ industries)
and (b) included the number of four-digit SIC
codes within a three-digit SIC as a control in
Equation 11. The results remained statistically sig-
nificant (Row 7, Table 5).

Other econometric concerns: Rows 8 to 16 of
Table 5 provide results to alleviate other possible
econometric concerns such as errors being corre-
lated within an industry (robustness check: clus-
ter errors within an industry), taking logarithms
(robustness checks: not taking logarithms at all
and not taking logarithms for the dependent vari-
able), the choice of 10 firms in an industry year as
the cutoff for inclusion (robustness check: use 25
firms as cutoff), influence of outliers (robustness
check: exclude the two top and bottom indus-
tries in terms of learning rates, choice of time
period (robustness check: separate 1973—1984 and
1985-2000), and other unobserved industry fac-
tors (robustness check: joint two-digit SIC year
dummies). The results remain statistically signifi-
cant for these alternative specifications.
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