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THE LEARNING CURVE, TECHNOLOGY BARRIERS
TO ENTRY, AND COMPETITIVE SURVIVAL IN THE
CHEMICAL PROCESSING INDUSTRIES

MARVIN B. LIEBERMAN

Graduate School of Business, Stanford University, Stanford, California, U.S.A.

This paper evaluates entry and survival rates in a sample of 39 chemical product industries.
The analysis focuses on learning-based cost advantages potentially held by incumbent firms.
A logit model of entry gives no evidence that entry decisions were sensitive to the cumulative
production lead held by incumbents. Entry was facilitated by the fact that for most products,
technology was available from a range of sources. A hazard function model reveals that
entrant survival rates were unrelated to order of entry or source of process technology.
However, survival was adversely affected when the leading incumbent held a large cumulative
output advantage or when entrants built plants of sub-optimal scale. Thus, a large incumbent
lead in production experience did not deter new entry but did reduce the entrant’s probability

of survival.

INTRODUCTION

The ‘learning curve’ (or ‘experience curve’) is a
central concept in strategic planning. It provides
a rationale for pursuit of market share as well
as the conceptual basis for portfolio planning
techniques such as those introduced by the
Boston Consulting Group in the 1970s.! Most of
these strategic planning models presume that
the firm with greatest cumulative production
experience will enjoy a cost advantage over rivals
and may be able to deter entry by new producers.

Numerous studies have documented the exist-
ence of learning curves in a wide range of
industries. (See Dutton and Thomas, 1984, for
a review.) However, few researchers have tried
to empirically assess the magnitude of competitive

! The BCG planning procedure prescribes that firms with an
initial lead should invest resources to maintain or increase
market share during the early growth phase of the market.
Later, when growth slows, less experienced rivals and new
entrants will be unable to catch up to the accumulated
output, and hence costs, of the dominant firm. See Boston
Consulting Group (1972).
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advantages derived from the learning curve. Shaw
and Shaw (1984) tracked market shares for
European producers of three synthetic fibers—
acrylic, nylon, and polyester. They concluded
that ‘early entrants who established major market
shares early in the growth phase of the product
life cycle were able to maintain that leadership
nearly twenty years later . . . not only did almost
all of the late entrants fail to achieve significant
market shares, but in the difficult market
conditions between 1974 and 1981 they provided
seven out of nine market withdrawals’. In the
disposable diaper industry, Porter (1984) noted
that learning-related cost advantages reinforced
industry dominance by the first-mover firm, and
contributed to the exit of several rival producers.
Similarly, Ghemawat (1984) exained DuPont’s
efforts to exploit learning-based cost advantages
in the production of titanium dioxide.

The argument that greater production experi-
ence confers a cost advantage depends critically
on the assumption that learning can be kept
proprietary. There is, however, considerable
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evidence that process technology diffuses rapidly.
Based on a survey of firms in 10 major industries,
Mansfield (1985) concluded that ‘information
concerning the detailed nature and operation of
a new product or process generally leaks out
within a year’. Of the 10 industries in Mansfield’s
sample, chemicals was the one where process
developments could be kept most proprietary:
90 percent of the respondents reported that
process developments could be kept secret for
more than 18 months. But even in chemicals,
substantial leakage ultimately occurs. In a study
of nine petrochemical industries, Stobaugh (1984,
1988) found licensing to be a common source of
technology transfer that facilitated entry.

" Theoretical models of market structure in indus-
tries characterized by learning illustrate the effects
of such technological ‘leakage’ on market concen-
tration and profitability. Spence (1981), Gilbert
and Harris (1981), and Lieberman (1987b) show
that when learning remains proprietary, only a few
firms can coexist in equilibrium, and barriers to
late entry can be exceedingly high.? Gilbert (1989),
however, shows that an incumbent monopolist with
a significant learning-based cost advantage might
find it more profitable to set a high price and
allow entry by fringe producers, rather than set a
price sufficiently low to deter entry.

In environments with rapid technology diffusion
there are no learning-based advantages to a first-
mover position or to greater market share.
Ghemawat and Spence (1985), Lieberman
(1987b) and Stokey (1986) show that diffusion
erodes entry barriers and causes prices to decline
roughly in parallel with costs, as is commonly
observed in most industries. Learning is observed
at the industry level, but firms have similar costs.

Processes of random search by firms within a
fixed population of technological possibilities can
also yield cost behavior consistent with the
learning curves commonly observed in practice
(Muth, 1986). If incumbents hold little advantage
over potential entrants in searching for improved
manufacturing processes, production experience
may carry negligible value even though industry

2 In these models with proprietary learning, competition is
intense early in the evolution of the market, as firms price
aggressively to gain greater cumulative experience. Margins
increase over time, so that firms earn high profits as the
industry matures. This resembles the logic of the BCG
planning framework.

costs are observed to decline with cumulative
output. Stochastic models of industry evolution
in this spirit include Nelson and Winter (1982),
Lippman and Rumelt (1982) and Jovanovic
(1982). In many industries, outsiders have been
the source of dramatic technical breakthroughs
that have nullified the accumulated learning of
existing producers.

This paper assesses the importance of the
learning curve as a barrier to entry and as a
determinant of the success or failure of firms.
The analysis is based on observed rates of entry
and exit in 39 chemical product industries over
roughly two decades. The sample is limited to
homogenous products, where production costs
are the primary measure of an entrant’s success
or failure. As documented in Lieberman (1984,
1987¢), the learning curve has been a significant
factor at the industry level in this chemical
products sample.

The paper also assesses the importance of
technology licensing as a factor affecting entry
and exit. Process technologies developed through
learning or R&D activity may diffuse to new
entrants through licensing arrangements. When
licenses are not available, entrants must develop
their own technology in-house; this might be
expected to reduce the rate of entry or the
survival rate of firms that do enter. These
hypotheses, and factors affecting license avail-
ability, are examined using data on process
technology sources.

The remainder of this paper is in five sections.
Following a brief description of the chemical
products sample, the discussion focuses first on
entry, and then on exit. The connection between
the learning curve and entry is examined using
a logit model. This model expresses the prob-
ability of entry as a function of a series of
explanatory variables. Included among these
variables are two alternative measures of entrant’s
expected cost disadvantage, assuming a pro-
prietary learning curve. The next section docu-
ments the specific sources of process technology
used by entrants, focusing on the frequency of
technology licensing versus internal development.
The technology source and learning curve meas-
ures are then tested in a hazard function model
of entrant mortality. A final section concludes
with a summary of findings and a discussion of
strategic management implications.



Entry and Survival Rates in Chemical Product Industries

DATA SAMPLE

The data sample covers the 39 chemical products
listed in Table 1.*> There are approximately 20
years of coverage for each product. For most
products coverage begins in the late 1950s or
early 1960s; coverage ends uniformly in 1982.4
The data are for plants built and operated in the
United States.

The sample products share a number of
common characteristics. All are homogeneous,
undifferentiated chemicals, synthetic fibers, or
metals.> They are essentially commodity
products—speciality chemicals are excluded,
given lack of public data. Profitability and
competitive success are primarily determined by
manufacturing costs; consumer brand loyalty,
advertising, and other marketing-based factors are
unimportant in these producer goods industries.

All products in the sample demonstrated
positive net growth in industry output from the
carliest years of coverage through the mid-
1970s. Thus, the sample represents products
with growing demand, although some products
declined after 1975. Growth attracted consider-
able entry; entry occurred for all but five of the
sample products. There are a total of 258 entrants
in the sample.

Entrants often failed to survive, but their
mortality rates were not substantially different
from those of incumbent firms in existence at
the start of sample coverage. On average, 66
percent of entrants survived through the end of
the sample period, compared with 60 percent of
the incumbent firms.

While entry occurred for nearly all products,
incumbent producer concentration varied greatly.

3 The dataset is described in greater detail in Lieberman
(1987a). Data on production capacity at the plant level are
primarily from annual issues of the Directory of Chemical
Producers, published by SRI International. Industry-level
output data are from U.S. International Trade Commission
and Census Bureau publications. Additional data on the
fixed investment cost of new plants in the 1970s (FIXED)
are from the chemical engineering literature.

4 Entry is recorded through 1978 only, given that 5 years of
post-entry data are required for the logit and survival analysis.
5 A few products in the sample, such as the synthetic fibers
and polyethylene, are slightly differentiated across producers.
¢ Robert Stobaugh kindly provided his data on technology
licenses, which supplemented the trade press reports for six
products in the sample.
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Table 1 shows that the number of producers
ranged from one to more than 60.

Vertical integration is common in the chemical
industry, and many entrants in the sample
were pursuing policies of forward or backward
integration. Despite the presence of integration,
all products in the sample had well-defined output
markets, with at least 25 percent of industry
output sold through arms-length channels.

Reports published in the trade press often
indicated the primary source of process tech-
nology used by entrants.® As shown in Table 1,
such information was obtained for 114 of the
entrants in the sample. The incompleteness of
coverage results from gaps in the author’s files,
and the fact that the source of technology was
not always announced. Excluded are all products
with more than 20 producers, and nearly all firms
that entered after 1973.

The rate of process improvement was gradual
for most products in the sample. However, for
several products there were important disconti-
nuities in process technology.” These break-
through processes were often introduced by
outside sources (e.g. European producers, engi-
neering contractors, or new entrant firms) and
were often followed by significant entry and exit.
In a few cases it is clear that such technological
shocks eliminated all experience-based advan-
tages held by incumbents. For example, the
development and licensing of a new, low-cost
refinery-based process for cyclohexane induced
the pioneering producer (DuPont) to exit.

ANALYSIS OF ENTRY
Logit model

A logit model was used to test the significance
of the learning curve as an entry barrier. This
logit model is an elaboration of the basic entry
model developed in Lieberman (1987a). The logit
model estimates the probability of new entry
during each observation year as a linear function

7 Specific examples include the adoption of centrifugal
compressor technology in ammonia and methanol manufac-
ture, development of processes to exploit low-cost feedstocks
for phthalic anhydride, maleic anhydride and vinyl acetate,
and a breakthrough in catalyst technology for acrylonitrile.
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Table 1. Products included in data sample

Number of
Number of  Number of Fraction of entrants
firms at entrants entrants for which
start of during surviving technology
Coverage coverage coverage through information
Product name period period period* 1983 available

Organic chemicals

Acrylonitrile 1956-82 4 2 1.00 2
Aniline 1961-82 5 3 1.00 2
Bisphenol A 1959-82 3 2 1.00 1
Caprolactam 1962-82 2 3 0.67 3
Carbon disulfide 1963-82 5 0 — 0
Cyclohexane 1956-82 2 14 0.50 12
Ethanolamines 1955-82 3 2 0.50 0
Ethylene 1960-82 20 10 0.90 0
Ethylene glycol 1960-82 9 6 0.83 4
Formaldehyde 1962-82 15 5 0.80 1
Isopropyl alcohol 1964-82 3 1 1.00 0
Maleic anhydride 1958-82 3 7 0.57 1
Methanol 1957-82 8 6 0.67 6
Methyl methacrylate 1966-82 4 0 — 0
Neoprene rubber 1960-82 1 1 1.00 1
Pentaerythritol 1952-82 5 4 0.50 1
Phenol 1959-82 8 7 0.86 6
Phthalic anhydride 1955-82 8 9 0.22 8
Polyethylene-LD 1957-82 9 7 0.71 6
Polyethylene-HD 1957-82 2 13 0.85 13
Sorbitol 1955-82 2 2 0.50 2
Styrene 1958-82 7 7 0.86 4
1,1,1-Trichloroethane 1966-82 3 1 1.00 1
Urea 1960-82 12 29 0.83 0
Vinyl acetate 1960-82 4 5 0.20 3
Vinyl chloride 1962-82 12 6 0.67 4
Inorganic chemicals

Ammonia 1960-82 40 32 0.56 0
Carbon black 1964-82 9 0 — 0
Chlorine 1961-82 34 15 0.67 0
Hydrofluoric acid 1962-82 10 0 — 0
Phosphoric sulfide 1965-82 4 0 — 0
Sodium 1957-82 3 0 — 0
Sodium chlorate 1956-82 3 8 0.63 3
Sodium hydrosulfite 1964-82 6 1 1.00 1
Titanium dioxide 1964-82 5 1 1.00 1
Synthetic fibers

Acrylic fibers 1953-82 3 3 1.00 3
Nylon fibers 1960-82 5 19 0.47 7
Polyester fibers 1954-82 1 18 0.44 14
Metals

Aluminum 1956-82 4 8 1.00 0
Magnesium 1954-82 2 4 0.25 4

* Includes entrants through 1978 only, as computation of CDR requires 5 years of data subsequent to entry.
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of a series of explanatory variables.® Explanatory
variables considered in Lieberman (1987a) include
measures of industry growth, capacity utilization,
and the ‘lumpiness’ of new plant investment. The
present study adds two proxies for the anticipated
cost disadvantage of entrants, under the assump-
tion that learning by incumbents could be kept
proprietary.®

In the logit analysis the data are arranged so
that there is one observation for each product
and year in the sample. The dependent variable
is binary, equal to one if entry into the product
occurred during the observation year and zero if
entry did not occur.

Explanatory variables

The explanatory variables are defined as follows:

GROW,,, the average annual growth rate of
industry output for product i over a 5-year
period, starting 1 year prior to the observation
year ¢ and extending through year ¢t+4.1°

CU; ,—,, industry capacity utilization for product
i, recorded 2 years prior to the observation
year. The 2-year lag reflects the period typically
required for construction of a new chemical
plant.

NPLTS;,, the total number of plants producing
product i at the start of the observation year.
NPLTS serves as a control for differences
in new plant ‘lumpiness’ and the rate of
replacement investment. With a larger number

8 The logit model relates the probability of entry to a series
of explanatory variables through the functional form:

ePXiu

Pr=m
O 1+ eBXi

where p;, is the probability of entry into product i during
year t, X;, is the vector of explanatory variables, and B is
the vector of logit coefficients. Lieberman (1987a) gives a
motivation for this model in the context of entry.

9 In Lieberman (1987a), entrants and incumbents are assumed
to have identical costs: entry and incumbent new plant
investment are equivalent except for the fact that entry
increases the number of producers. With a proprietary
learning curve, asymmetries arise between entrants and
incumbents which favor expansion by the latter, thus
constituting a barrier to entry.

1 This computation assumes that entrants were capable of
forecasting market growth beyond the entry year. The time
period from ¢ — 1 through ¢ + 4 overlaps the period used
for the CDR measures, so that the logit tests distinguish
potential cost disadvantages from the effects of market
growth. Similar results were obtained using historical market
growth, as in Lieberman (1987a).
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of plants in an industry, individual plants
account for a smaller fraction of total output.
Plants must therefore be built more frequently
as output grows over time. The frequency
of replacement investment is also roughly
proportional to NPLTS. Most replacement
investment is by incumbents, but entrants may
displace incumbents, e.g. when incumbents
choose to exit rather than replace their plant.!!

FIXED,, total fixed investment cost of a typical
plant to produce product i, built in the mid-
1970s, in millions of dollars.

TIME,, a time trend, measured as the last two
digits of the observation year. This time trend
should prove negative if entry followed a
diffusion process, with the queue of potential
entrants becoming depleted over time.

Consistent with most prior studies, learning is
assumed to be a function of cumulative output.
Lieberman (1984) shows that, for products in the
data sample, price (and by implication cost)
reductions at the industry level were strongly
correlated with growth in industry cumulative
output. Thus, cumulative output serves as a
reasonable proxy for learning at the industry
level. Much of the strategic planning literature
assumes that cumulative output also serves as a
good proxy for relative cost and learning at the
firm level. This holds true if learning is an
incremental process, firms learn at similar rates,
and the accumulated knowledge is kept pro-
prietary.!?

The measures of learning-based advantage
evaluated here incorporate these assumptions
about firm-level learning. The learning curve
entry barrier hypothesis was tested using two
measures of the expected cost differential between
entrants and incumbents, given the observed
‘head-start’” of incumbents in cumulative pro-
duction. When included in the logit equations a
significant negative coefficient for either or both
of these measures suggests the existence of
learning curve-based barriers to entry.

The first measure is CDR1, ,, the expected unit
cost of the entrant, relative to the cost of the

' The logit results are quite similar when the reciprocal of
NPLTS is used to control for lumpiness and NPLTS for
replacement investment, as in Lieberman (1987a).

12 See Bohn (1988) and Dutton and Thomas (1984) for
evidence that the process is more irregular when viewed at
the disaggregate firm or plant level.
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most experienced incumbent, 5 years after entry.
Computation of CDRI1 assumes that the entrant
attains an average market share immediately
following entry and maintains this share over time.
With proprietary learning and a conventional ‘log-
linear’ learning curve, each producer j’s marginal
unit cost at any time ¢ can be represented as

C(Xij) =co(Xij)° (1)

where X ;;, is the cumulative output of the firm
through the start of year ¢,!* b is the ‘elasticity’
of the learning curve, and ¢, is a constant,
corresponding to the cost of the first unit. With
proprietary learning, an entrant’s initial cost is
always extremely high; we therefore allow the
entrant a 5-year start-up period.!* Let x5
represent the expected cumulative output of the
entrant over the first 5 years of production; and
let X,, s represent the expected cumulative output
of the most experienced producer measured
through the start of year t+5. CDR1 can then
be expressed as

CDR1,, = [xf” ]_b @)
o Xt+5

To compute this expression, values for x,.s,

X;+s and b are required. The mean learning
elasticity of 0.36 reported in Lieberman (1984)
was used for b. The actual cumulative output of
the ‘most experienced’ firm, observed 5 years
after the observation year, was used for X,,s.!5
The cumulative output anticipated by a potential
new entrant, x,,s, was estimated as follows.
Immediately after entry, the entrant was assumed
to gain an average market share of 1/(n+1),
where n represents the number of producers
prior to entry. Cumulative output was then
computed by assigning to the entrant this share

13 Firm-level cumulative output was computed as follows.
An estimate of industry cumulative output prior to the initial
year of sample coverage was made using historical output
data, plus extrapolation where necessary. This cumulative
output was allocated among incumbent producers in the
initial year of sample coverage in proportion to their capacity
shares in that year. Cumulative output was then updated
annually by allocating total industry output to firms in
proportion to their observed capacity shares.

4 While this 5-year period is arbitrary, the resulting CDR
values are highly correlated with those obtained using longer
or shorter start-up periods.

15 The ‘most experienced’ firm is the producer with the
largest cumulative output at the start of year ¢ + 5.

of actual industry output over the period from
year t through year ¢+4.16

The second cost ratio, CDR2; ,, compares the
entrant with an ‘average’ incumbent firm. CDR2
was computed from the formula in (2) with the
denominator redefined as follows. The cumulative
output of an ‘average’ incumbent, at the start of
observation year ¢, was calculated by taking total
industry cumulative output at the start of year ¢
and dividing by the number of producers. This
base level of cumulative output was added to
X,;+s to give the cumulative output of an average
incumbent at the start of year ¢+5. In this
computation the entrant differs from an average
incumbent in that the entrant begins production
in year ¢t with a zero base level of cumulative
output.

CDR1 and CDR?2 are both designed to predict
an entrant’s relative costs under the assumption
that learning is completely proprietary. While
this assumption is extreme, the CDR measures
should capture relative cost differences even if
there was some diffusion of learning.!”

Table 2 gives summary statistics and a corre-
lation matrix for the explanatory variables. Across
the sample, market growth averaged 6.7 percent
per year, and capacity utilization averaged 82
percent. The number of plants ranged from one
to 98, and the capital investment cost of a new
plant ranged from one million to 60 million
dollars. The cost disadvantage ratios, CDR1 and
CDR2, ranged from slightly above unity to 4.1
and 2.7 respectively.

Logit estimation results

Table 3 reports results of the logit analysis of
entry. Equations 1, 2 and 3 are based on the full
data sample. Equations 4 and 5 are limited to
concentrated product markets with five or fewer
producers at the start of the observation year. If

16 This procedure assumes that entrants were able to anticipate
industry output and expected to capture an average market
share. The assumption of an average market share simplifies
the calculation but is overly optimistic for most entrants.
However, alternative share assumptions give similar values.
The CDR measures were also computed based on an
extrapolation of historical (rather than actual) market growth,
with similar results.

'7 Diffusion drives the cost ratios closer to unity, but if
diffusion rates were similar across products, the cost penalties
would have remained roughly proportional to CDRI1 and
CDR2.
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Table 2. Summary statistics of variables used in the logit analysis

of entry

Variable Mean Minimum Maximum
1. ENTRY;, 0.229 0 1.00
2. TIME, 69.2 54.0 78.0
3. GROW,, 0.069 -0.123 0.489
4, CU; - 0.821 0.268 1.18
5. NPLTS;, 15.7 1.00 98.0
6. FIXED; 13.4 1.00 60.0
7. CDR1;, 2.24 1.33 4.08
8. CDR2;, 1.55 1.06 2.71
Correlation matrix

1 2 3 5 6 7 8

1 1.00
2 -0.15 1.00
3 0.24 —-0.53 1.00
4 0.10 0.13 -0.17 1.00
5 0.27 0.15 -0.08 0.14 1.00
6 0.06 —0.05 0.06 0.14 0.05 1.00
7 0.03 029 -0.51 0.05 050 0.11 1.00
8 -0.24 0.33 -0.67 —0.04 -0.15 0.02 0.53 1.00

process technology diffuses more slowly when
there are only a few competitors, the learning
curve may limit entry in concentrated markets
but not in markets with many producers.

The coefficient values in Table 3 represent
partial derivatives of the probability of entry
during a typical observation year. These deriva-
tives were computed at the sample mean, where
the probability of entry was 23 percent.'®

The coefficients for GROW, CU, NPLTS and
TIME all appear consistent with the predictions
of the entry model in Lieberman (1987a). Entry
was stimulated by high capacity utilization and
rapid market growth.’® Entry was more frequent
for products with a large number of plants,
reflecting opportunities for replacement invest-
ment and less ‘lumpiness’ of plant relative to
industry output. The negative time trend suggests

18 Table 2 reports the mean values of the variables.

19 The coefficients can be interpreted as follows. The CU
coefficient of 0.447 in equation 1 indicates that an increase
of 0.1 in the rate of capacity utilization (e.g. from 80 to 90
percent) raised the probability of entry during the year by
about 4.5 percent. Similarly, an increase of 0.1 in the growth
rate (e.g., from 10 to 20 percent per year) raised the
probability of entry by about 15 percent.

that entry followed a diffusion process, where
the queue of potential entrants diminished over
time as entry occurred. FIXED appears uniformly
insignificant in Table 3, indicating that investment
capital requirements were not a major entry
barrier.

The CDR1 and CDR2 coefficients give no
evidence that entry was retarded when incumbent
firms held a large cumulative output advantage.
The CDR1 and CDR2 coefficients are insignifi-
cant in all of the entry equations. Indeed,
considerable entry occurred for many products
in the sample despite large relative cost penalties
implied by the CDR measures.?

29 In addition to the CDR ratios, I tested several patent
count measures in the logit entry equations. (Lieberman
(1987¢) describes the data on manufacturing process patents,
obtained for 23 products in the sample.) Conceivably, patents
by incumbent U.S. producers might retard entry, while
patents by foreign firms and U.S. non-producers might
facilitate entry. In the entry equations, I tested (1) the
number of patent applications by each group during the 5-
year period prior to each observation year, and (2) cumulative
historical counts of patents. None of these measures proved
statistically significant. Thus, there appears to have been no
general relationship between patent activity and rates of
entry.
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Table 3. Logit analysis of entry*

1 2 3 4 5
All All All Five or fewer Five or fewer
Sample: observations observations observations producers® producers®
constant ~0.284 —0.405 -0.017 0.519 0.373
(-1.0) (-1.3) (=0.0) (1.4) (1.0)
TIME, —-0.0079* —0.0080* ~0.0078* —0.0156** —0.0160**
(-2.1) (-2.1) (=2.0) (=3.3) (=3.4)
GROW,, 1.49%* 1.63%* 1.18** 0.410 0.583
(5.4) 5.1 (3.3) (1.1) (1.5)
CU; - 0.447** 0.468** 0.414** 0.510** 0.565**
(3.2) (3.3) (2.9) (2.9) (3.3)
NPLTS;, 0.0066** 0.0060** 0.0063** 0.0088 0.0075
(7.0) (5.2) (6.6) (0.7) (0.6)
FIXED; 0.0003 0.0000 0.0005 0.0003 0.0000
(0.2) (0.0) (0.4) (0.1) (0.0)
CDRI;, 0.050 —0.094
0.9) (-1.2)
CDR2;, -0.149 —0.042
(-1.3) (-0.4)
Log likelihood —317.96 —-317.55 —317.04 —-90.99 —91.68
Mean of dependent
variable 0.229 0.229 0.229 0.146 0.146
No. of observations 695 695 695 267 267

2 Dependent variable equals 1 if one or more firms entered product i during year ¢; dependent variable equals zero if entry
did not occur. Numbers in parentheses are asymptotic f-statistics.
b Sample limited to observations with five or fewer producers at the start of the observation year.

* Significant at the 0.05 level, one-tailed test.
** Significant at the 0.01 level, one-tailed test.

The insignificance of the CDR measures and
the frequent observations of late entry are
consistent with a number of possible explanations,
including the following: (1) there was sufficient
diffusion of technology that late entrants did not
suffer major cost disadvantages; (2) incumbents
had lower costs but chose to set a high price and
allow entry; (3) the industry learning process was
analogous to a succession of ‘random draws’ from
a population of potential process technologies,
with entrants sampling on roughly equal terms
with incumbents. Unfortunately, without data on
firm-level costs it is impossible to distinguish
among these explanations empirically.

Market growth and entry

The logit results in Table 3 suggest that market
growth served as the primary long run stimulus
for entry. Figure 1 plots entry for each product
as a function of output growth over the sample
period. The vertical axis gives the increase in
producers, measured as the initial number of

incumbents plus the total number of entrants,
divided by the number of incumbents (i.e. the
sum of columns 3 and 4 in Table 1, divided by
column 3).2! The horizontal axis gives the growth
in total output, measured as the ratio of output
in 1982 to that observed at the start of sample
coverage. Both axes are in logarithms.

Figure 1 shows that output growth and entry
were highly correlated (r=0.69). A linear
regression trend line is included in the figure.
Products below this line experienced less than
average entry, given the magnitude of market
growth. Of the five products that experienced no
entry, four had negative or negligible output
growth over the sample period. Only in the case
of methyl methacrylate was there a lack of entry
for a product with significant growth.?? Several
other products—e.g. acrylic fibers, acrylonitrile,

2! The numerator represents the number of producers that
would have been in existence at the end of the sample period
if mortality rates were zero.
22 Entry into methyl methacrylate did occur shortly before
the start of sample coverage.
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bisphenol A and low-density polyethelyne—
experienced less entry than might be expected
given the rate of market growth. These products
are examined further in the following section,
which considers the availability of process tech-
nology licenses.

SOURCES OF TECHNOLOGY USED BY
ENTRANTS

One explanation for the absence of a link between
the learning curve measures and entry is that
there was substantial diffusion of process tech-
nology from incumbents to potential entrants.
Such diffusion could occur through various
channels. These include inter-firm mobility of
personnel, networks of informal communication
among engineers, technology licensed from do-
mestic or foreign producers, and know-how pur-
chased from capital goods suppliers and contrac-
tors.

Stobaugh (1984, 1988) documented channels
of technology diffusion for nine petrochemical
products. He defined three stages of the ‘product
life cycle’ and examined the relative importance

Plot of entry vs market growth. * Ratio of: (a) initial number of producers plus number of entrants,
Ratio of; (a) industry output in 1982, to (b) industry output at start of

of various diffusion mechanisms within each of
these stages. Stobaugh found licensing to be an
important technology transfer mechanism that
increased in importance over time: 27 per cent
of plants were built using licensed technology in
stage 1, increasing to 73 percent by stage 3.
Foreign licensing was more common than do-
mestic licensing. His results suggest that once
several firms have developed commercial pro-
cesses, each firm has an incentive to grant licenses
before rivals do the same. This incentive is
particularly strong in the case of foreign licenses,
since the new entrants will not compete directly
in the home market of the licensing firm.

Table 4 documents the major sources of process
technology used by the 114 entrants in the present
study for which technology source data were
obtained. The table distinguishes six channels for
technology acquisition. Technology could be
licensed or purchased from: (a) a U.S. producer
of the product in question, (b) a U.S. firm that
was not a producer (e.g. a chemical plant
contractor), or (c) a foreign firm (either producer
or non-producer). Foreign producers could also
enter directly into the U.S. market, either alone
or in partnership with a domestic firm. Finally,
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a U.S. firm without prior production experience
for the product could enter by developing its
own manufacturing process.?

The first column of Table 4 covers the full 114
entrant sample. About one-third of these firms
developed their own technology. Licensing was
also prevalent: 21 percent of the entrants obtained
technology licenses from domestic producers, 18
percent obtained licenses from foreign firms
(primarily producers), and 16 percent licensed or
purchased technology from U.S. non-producers.
Foreign producers accounted for 13 percent of
the entrants, typically in the form of a joint-
venture arrangement with a U.S. firm.

Entrants were more likely to develop their
own technology when the existing number of
producers was small. The second column of the
table reveals that the majority of entrants into
concentrated markets (having five or fewer U.S.
producers) developed their own technology. By
comparison, in markets with more than five
producers, only 24 percent of entrants developed
their own technology. Licenses, when obtainable
in concentrated markets, rarely came from
domestic producers. These observations imply
that direct access to incumbent technology was
more difficult when the number of existing
producers was small.

The next column of Table 4 gives the distri-
bution of technology sources used by entrants
into products with a smaller than expected
amount of entry, as indicated by large negative
deviation from the trend line in Figure 1. About
two-thirds of these entrants developed their own
technology, as compared with one-third of the
entrants in the sample overall. Thus, entry
appears to have been diminished when technology
licenses were difficult or impossible to obtain.

The next three columns give the distribution
of technology sources for other sub-samples of
entrants. Column 3 reports the distribution for
entrants into the three synthetic fiber industries.
Here, joint ventures were prevalent, but other-
wise the breakdown resembles that shown for
the overall sample. Columns 4 and 5 distinguish

23 Presumably, some entry also occurred using standard
production processes that were common industry knowledge
and therefore not licensed or significantly modified by the
entrant. Such entrants are omitted from Table 4, since
technology information was not important enough to warrant
announcement in the trade press. Multiple sources of
technology were identified for ten entrants in Table 4; I
selected what appeared to be the most important source.
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two specific categories of entrants: major chemical
companies (SIC 2801) and oil companies (SIC
2912 and 2913). The distribution of technology
sources used by the major chemical companies
is similar to that shown for the sample as a
whole. However, the oil companies appear to
have relied disproportionately on licensing from
other domestic U.S. firms.

Thus, the patterns in Table 4 corroborate and
extend Stobaugh’s findings. Licensing was a
common mechanism for technology diffusion and
was more prevalent for products having a
large number of producers. When licensing was
restricted the rate of entry was reduced (but
typically not to zero). For most products,
technology was available from a range of sources.
The next section examines whether these tech-
nology sources differed in terms of risk—for
example, one might expect internal development
of a new production process to be riskier than
licensing, but to carry a higher potential return
if successful.

ANALYSIS OF ENTRANT SURVIVAL
Technology, risk, and survival

The absence of a significant link between
the CDR measures and entry rates does not
necessarily imply that entrants enjoyed cost parity
with incumbents. If incumbents maintained a
price umbrella, then the rate of entry might be
high despite cost disadvantages suffered by
entrants. And under certain conditions, incum-
bent cost advantages would be reflected in low
survival rates of entrants, rather than in low rates
of entry per se.

Consider the decision of a potential entrant,
who elects to enter if anticipated profit exceeds
zero. Anticipated profit depends on the firm’s
expectations regarding the future market price
and the firm’s own production cost, neither of
which can be predicted perfectly in advance.?*
Entry normally involves payment of some fixed,
non-recoverable entry cost; for example, the sunk
cost of a manufacturing plant. Lippman and
Rumelt (1982) have proposed an equilibrium
model of entry and exit under such conditions.

24 We ignore the entrant’s uncertainty about incumbents’
production costs; for a theoretical treatment of this issue,
see Milgrom and Roberts (1982).
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This section elaborates their basic approach to
develop some simple propositions regarding the
probability of exit.

Assume that the entrant’s unit variable cost,
(', is determined by a random draw from some
probability distribution at the time of entry. Cost
need not be static; for example, it may follow a
proprietary learning curve as indicated by equa-
tion (1), where the firm draws an initial unit
cost, ¢o, and the cost of subsequent units declines
at rate b. If learning occurs, C' represents the
average discounted present value of the entrants’
unit variable cost. Assume that the entrant
remains in the market if C’ proves to be less
than the market price, P’, and exits otherwise.
Note that an entrant survives but earns negative
profits if its margins are positive but insufficient
to cover the fixed cost of entry.

Under these assumptions the probability of
exit increases with the variance of the cost
distribution from which the entrant draws. Con-
sider the two alternative cost distributions shown
as f1 and f, in Figure 2, where f, has the larger
variance. (For example, f; might correspond to
the expected distribution of cost outcomes if the
firm licenses a known technology, whereas f,
might be the distribution if the firm pursues a

Probability

riskier strategy of developing its own technology.)
To enter, the firm must draw from one of the
two distributions; the firm survives if the cost
realization, C’, falls to the left of P’, and exits
otherwise. If the firm is indifferent between the
two distributions, then f, must have higher
expected cost and higher probability of exit; this
is counterbalanced by the fact that f, has a higher
probability of achieving extremely low cost.

One empirically testable hypothesis is that
alternative technology sources differ in risk in
the manner described by f; and f,. For example,
internal development of technology may be
riskier than licensing, with a higher variance of
cost outcomes. If firms are indifferent between
the two sources (as suggested by the fact that
licensing and internal development are both
observed for many products in the sample) then
a higher rate of exit should be evidenced by
firms that selected the internal development
approach.

A second factor that should affect the prob-
ability of exit is the fixed cost of entry. Lippman
and Rumelt (1982) show that, in equilibrium, an
increase in fixed entry cost makes firms more
conservative in their entry decisions, thereby
increasing the rate of survival. In the context of

Figure 2.

Probability distribution of entrant’s cost under alternative risk assumptions
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the chemical industry sample this implies a
positive relation between survival and the initial
fixed investment cost of plant.

A third set of factors affecting the likelihood
of exit relates to expectations about P’, the post-
entry price, which is uncertain at the time of
entry.?’ The probability of exit increases with the
variance of P’ as anticipated by the entrant.?®
Price expectations are impossible to measure
directly; however, one reasonable hypothesis is
that the variance of P’ increases with the cost
advantage held by the leading incumbent firm.
With proprietary learning, entry will occur only
when the incumbent maintains some price
umbrella above its own cost; this umbrella may
fall if a larger than anticipated fringe of entrants
is attracted. The maximum extent of price-cutting
(and hence variance of the price distribution)
increases with the cost differential between the
incumbent and the entrant. Thus, a larger value
of CDRI, reflecting a larger cost differential
between the entrant and the leading incumbent,
should be linked to a higher probability of exit.

Hazard function model

The survival hypotheses were tested using the Cox
proportional hazards function model (Kalbfleisch
and Prentice, 1980; Cox and Oakes, 1984) to
evaluate the influence of the CDR and technol-
ogy-type variables on the mortality of entrants.
This model is commonly used in medical research
to examine the effects of environmental and
treatment factors on patient mortality. The Cox
technique assumes that hazard (death) rates
can be modeled as log-linear functions of the
covariates (explanatory variables).?’

The full sample for the survival analysis includes
the 258 firms that entered during the sample
coverage period. Thirty-four percent of these
entrants failed to survive through the end of
the coverage period. Incumbent producers in

25 Figure 2 ignores this source of uncertainty.

26 The reasoning is analogous to that given above in the case
of uncertain cost.

27 More specifically, the Cox model has the form: A(t,z) =
ho(f)eP=, where z is the vector of covariates, B is the vector
of unknown regression coefficients, and A, is the unknown
hazard function for an individual with covariate vector z =
0. I also tested some alternative hazard function models that
assume specific parametric forms for the disturbances. These
models were computationally more difficult, but gave similar
results.
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existence at the start of sample coverage had
similar mortality rates. On average, 40 percent
of incumbents exited over the course of the
coverage period.?®

Mortality was defined as exit of the firm via
plant closure or sale to an unrelated firm.
Excluded from this definition are exits via
corporate merger, where an entire firm (or a
major subset of its operations) was transferred
to an independent party.

The hazard function results, as reported in
Tables 5a and 5b, relate the probability of entrant
mortality to a series of covariate measures. These
include FIXED, CDR1 and CDR2 as defined
previously for the logit analysis. The propositions
derived from Lippman and Rumelt model suggest
that the probability of exit should be negatively
related to FIXED, which proxies for the fixed
cost of entry. Similarly, entrant mortality would
be positively related to CDRI1 if incumbent
learning was at least partly proprietary, so that
the scope for possible price-cutting increased
with the cumulative output lead of the most
experienced firm. Mortality would increase with
CDR?2 if pricing risk depended on the output
lead held by other incumbent firms.

To capture possible differences in technology
risk, dummy variables were defined for each of
the six technology source categories shown in
Table 4. Table 5b includes one of these dummies,
OWNTECH, which was set equal to one for
entrants that developed their own process tech-
nology. If internal development carried greater
risk than licensing, then OWNTECH should
be linked to a higher probability of failure
(counterbalanced by a larger but unobserved
mean return for those internal development
efforts that proved successful).

Two additional covariate measures
defined for the hazard function analysis:

were

ORDER, the relative order of entry of the firm.
ORDER provides a measure of late entry that
is independent of the cumulative output data
used for CDR1 and CDR2. It was computed
by first arranging all of the incumbents and

28 The exit proportions for entrants and incumbents are not
directly comparable, as incumbents are observed over a
longer average time period than entrants. Incumbents must
be excluded from the survival analysis given the lack of data
on their entry dates and other information needed to compute
the covariate measures.
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Table 5a. Analysis of entrant mortality*

1 2 3 4 5
All All All Five or fewer Five or fewer

Sample: observations observations observations producers® producers®
FIXED —0.006 —0.005 —0.005 —0.017 —-0.015

(=0.7) (=0.6) (=0.6) (-1.0) (—1.0)
SCALE —0.487* —0.505* —0.505* —1.92% —1.94%

(-2.4) (—2.5) (=2.5) (=2.5) (—2.6)
CDR1 0.479* 0.534

(2.3) 0.7)
CDR2 0.512 0.719
0.8) (0.8)
ORDER —-0.039
(-0.1)

Log likelihood —450.67 —452.75 —453.05 —75.90 —75.85
No. of observations 258 258 258 59 59
Fraction exiting 0.34 0.34 0.34 0.37 0.37

2 Based on Cox proportional hazard function model. Numbers in parentheses are t-statistics.
® Sample limited to observations with five or fewer producers at the start of the observation year.

* Significant at the 0.05 level.

Table 5b. Analysis of entrant mortality* (Subsample of entrants with information on source of

technology)
6 7 8 9
All All Five or fewer Five or fewer
Sample: observations observations producers® producers®
FIXED 0.064 0.061 —-0.003 0.000
(0.5) (0.5) (=0.1) (0.0)
SCALE -0.83* -0.97* -1.54 —1.53
(=2.3) (—2.6) (=1.5) (=1.5)
CDRI1 1.23%* 0.95
(2.8) (1.2)
CDR2 0.573 1.14
(0.8) (1.1)
OWNTECH 0.43 0.23 0.16 0.14
(1.3) (0.72) (0.24) (0.22)
Log likelihood -181.31 —184.91 —41.13 -41.18
No. of observations 114 114 41 41
Fraction exiting 0.39 0.39 0.32 0.32

2 Based on Cox proportional hazard function model. Numbers in parentheses are f-statistics.
® Sample limited to observations with five or fewer producers at the start of the observation year.

* Significant at the 0.05 level.
** Significant at the 0.01 level.

entrants for each product in historical sequence
of entry. ORDER was then computed by
dividing the entrant’s position in the queue by
the total number of firms. ORDER ranges
from slightly above zero to a maximum of 1.0,

where the latter value is assumed by the last
observed entrant.

SCALE, the relative scale of the entrant’s plant.
SCALE was computed by dividing (a) the
capacity of the initial plant built by the entrant,
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by (b) the average capacity of all plants
producing the product at the start of the year
in which entry occurred.

There are several reasons why larger plant scale
might contribute to a higher probability of
survival. First, a larger plant provides greater
static economies of scale, which are important
for most chemical products in the sample. Second,
larger scale of plant implies more rapid growth
of cumulative output by the firm, and hence
more rapid movement down the learning curve,
to the extent that learning is firm-specific.?’
Third, scale of entry may reflect technology risk;
firms may enter on an initially-small scale
when the commercial feasibility of their process
technology is uncertain. Finally, firms that built
small plants typically made fixed investments of
less than the full magnitude indicated by FIXED,
and hence might be more prone to exit.

Hazard function results

Tables 5a and 5b report the hazard function
estimates. Table 5a includes observations for the
full sample of 258 entrants, and a subsample of
59 entrants into concentrated product markets
with five or fewer producers at the time of entry.
Table 5b is limited to entrants with data on
source of technology. In both tables a positive
coefficient indicates that a larger value of the
covariate measure was associated with a higher
rate of entrant mortality.

Both tables provide evidence that entrant
mortality was greater when the most experienced
firm held a substantial cumulative production
advantage, as indicated by CDR1. CDR1 appears
significant for the full sample of entrants.
However, it is not significant when the sample
is restricted to concentrated product markets
having five or fewer firms. Neither CDR2 nor
ORDER prove significant in any of the hazard
function equations; thus, the entrant’s position
relative to all incumbents except the most
experienced firm seems to have been irrelevant
in affecting exit. Together, these results suggest

2% The two CDR measures assume that the entrant captures
an average market share; the extent to which this was actually
the case is indicated by SCALE. Thus, the entrant’s actual
cumulative output, relative to incumbents, is reflected in
both CDR and SCALE.
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that entrants were more likely to be ‘shaken out’
when the most experienced incumbent held a
substantial production lead but had attracted a
fairly large number of competing producers. This
interpretation implies that some part of the
incumbent’s accumulated learning remained pro-
prietary. Shakeout was not directly affected by
concentration per se.>"

The results also show that mortality was
not directly influenced by FIXED, the dollar
investment required to build a manufacturing
plant of efficient scale. Mortality was, however,
significantly linked to actual plant scale—entrants
that built relatively larger-scale plants had lower
rates of mortality, and vice-versa. This raises the
question of why entrants frequently built plants
of sub-optimal scale. One motive is suggested by
the fact that SCALE and FIXED are negatively
and significantly correlated—entrants into prod-
ucts with high fixed plant cost tended to build
initially small-scale plants. This may reflect a
desire to evaluate the process technology before
commiting to investment in a larger-size plant.
Thus higher FIXED investment cost made
entrants more conservative, but in a different
manner from that anticipated based on the
Lippman and Rumelt framework.

Table 5b covers the subsample of entrants
for which technology source information was
available. The FIXED, SCALE, and CDR
coefficients repeat their pattern from Table 5a.
The OWNTECH coefficients appeared with a
positive sign, indicating a higher failure rate for
firms that developed their own technology, but
the effect is not statistically significant. The other
technology source dummies (not shown) also
proved insignificant.?! Moreover, a comparison
of the first and last columns of Table 4 shows
that the distribution of technology sources was

39 To confirm that the significant CDRI1 coefficient reflects
cumulative production experience rather than market concen-
tration or the size of the largest incumbent, I added several
additional variables to the hazard function model. These
included the Herfindahl index, the share of the largest
incumbent, and the total number of incumbents at the time
of entry. All three of these measures proved insignificant,
and their inclusion had no effect on the significance of CDR1.
31 Talso tested dummies defined for major chemical companies
and petroleum companies to determine whether these (large)
firms might have lower mortality rates than other entrants
in the sample product industries. No significant differences
were detected. However, tests did show slightly lower
mortality for firms that entered through ecither forward or
backward integration. (Significant at 0.10 level.)
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roughly the same for surviving and non-surviving
firms. Thus, there is no evidence that internal
technology development was a riskier entry
strategy than licensing.3?

CONCLUSIONS

The learning curve is a salient factor contributing
to long-term cost and price reductions in many
industries, including the sample of chemical
products examined here. However, the results of
this study suggest that the learning curve—based
on cumulative output—had only a small impact
on competition in these chemical product indus-
tries. In general, the empirical results give only
weak support for some common assumptions
made in the strategic planning literature.

Differences in the cumulative output lead of
incumbent producers had little or no effect on
rates of entry into the sample product industries.
Technology appears to have diffused rapidly via
licensing and other channels. This made entry
feasible despite the fact that incumbents often
held decades of prior manufacturing experience.
Access to technology appears to have been more
difficult in markets with few producers; this
retarded entry but seldom reduced the entry rate
to zero.

These findings are consistent with theoretical
models of industry structure in environments
where learning diffuses rapidly (e.g. Ghemawat
and Spence, 1985; Lieberman, 1987b; Stokey,
1986). They are also consistent with models
where learning occurs through processes of
stochastic search (e.g. Muth, 1986; Nelson and
Winter, 1982), assuming that entrants search on
roughly equal terms with incumbents. Prior
studies have shown cumulative output to be a
good proxy for learning at the industry level;
the findings here suggest that differences in
cumulative output are a poor basis for making
inter-firm cost comparisons. High rates of dif-
fusion, variability in learning rates, and discon-
tinuous technical change diminish the usefulness
of the learning curve construct at the firm level.

32 One possibility is that the risk of internal technology
development occurs entirely at the initial R&D stage,
culminating in the construction of an (unobserved) pilot
plant. Entrants that proceed further to construct a commercial
plant represent a biased sample of technologically successful
firms. Alternatively, entrants that developed their own tech-
nology may have been more technically capable than those
who licensed, thus offsetting the difference in technical risk.

The survival analysis provides stronger evidence
that incumbents may have derived cost advantages
from the learning curve. Entrant mortality was
significantly greater in markets where the leading
incumbent maintained a large cumulative output
lead but had also attracted a sizeable number of
competing firms. One explanation is that the
dominant firm initially maintained a price
umbrella, which was subsequently lowered when
a larger than anticipated number of firms entered.
Such ‘shakeouts’ appear to have been rare
in concentrated product markets, where price
stability is generally greater and the leading firm
has less incentive to induce exit through price
reductions. These results are broadly consistent
with the previous findings of Shaw and Shaw
(1984) and Porter (1984).

Such findings on competitive ‘shakeout’ can be
rationalized in the context of the Lippman and
Rumelt (1982) model, assuming that entrants
perceived a link between incumbent cost advan-
tage and post-entry pricing risk. However, two
propositions derived from the Lippman and
Rumelt model—that alternative technology
sources differ in technical risk, and increases in
fixed plant cost reduce the probability of exit—
failed to be confirmed empirically.

Several important caveats are in order. The
proprietary learning curve model evaluated here
is the relation between cost and cumulative
output popularized by the Boston Consulting
Group in the 1970s, and now a standard topic
in strategic management textbooks. The negative
results do not imply that ‘learning’, more broadly
or flexibly defined, failed to yield competitive
advantages. The CDR measures used in the tests
are relatively crude proxies based on a number
of assumptions. The insignificant statistical results
may reflect the failure of these assumptions rather
than the absence of learning-based competitive
advantages. Without disaggregate data on costs
or profit rates, incumbent advantages must be
inferred from observed rates of entry and exit.

The empirical results do show that numerous
factors unrelated to the learning curve had major
effects on entry and exit. Rapid market growth
and high capacity utilization were strong induce-
ments to entry. Entry was more frequent in
markets where many plants were already in
existence, so that an average new plant accounted
for only a small proportion of total industry
capacity. However, firms that entered with plants
below efficient scale had a disproportionate rate
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of failure. Entry seems to have followed a
diffusion process, with entry rates falling over
time as the ‘queue’ of likely entrants was depleted.
Potential entrants appear to have had no difficulty
raising sufficient capital to build manufacturing
plant facilities. These observations are all consist-
ent with the findings of prior empirical studies
of entry.

The high diffusion rate of process technology
implicitly documented here has important impli-
cations for competitive strategy. Rapid diffusion
dulls the incentive to gain market share during
the early growth phase of a market, as originally
recommended by BCG and others. Indeed, if
significant spillovers are anticipated, it can be
desirable for firms to wait until late in the industry
life-cycle before entering. Entrants should be
sensitive to the availability of process licenses
and to the timing of technological ‘windows’ that
facilitate entry.
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